
ASN1★: Provably Correct
Non-malleable Parsing for ASN.1 DER

Haobin Ni
Cornell University
Ithaca, NY, USA

Antoine Delignat-Lavaud
Microsoft Research
Cambridge, UK

Cédric Fournet
Microsoft Research
Cambridge, UK

Tahina Ramananandro
Microsoft Research
Redmond, WA, USA

Nikhil Swamy
Microsoft Research
Redmond, WA, USA

Abstract

Abstract Syntax Notation One (ASN.1) is a language for struc-
tured data exchange between computers, standardized by
both ITU-T and ISO/IEC since 1984. The Distinguished En-
coding Rules (DER) specify its non-malleable binary for-
mat: for a given ASN.1 data type, every value has a distinct,
unique binary representation. ASN.1 DER is used in many
security-critical interfaces for telecommunications and net-
working, such as the X.509 public key infrastructure, where
non-malleability is essential. However, due to the expressive-
ness and �exibility of the general-purpose ASN.1 language,
correctly parsing ASN.1 DER data formats is still considered
a serious security challenge in practice.
We present ASN1★, the �rst formalization of ASN.1 DER

with a mechanized proof of non-malleability. Our devel-
opment provides a shallow embedding of ASN.1 in the F★

proof assistant and formalizes its DER semantics within the
EverParse parser generator framework. It guarantees that
any ASN.1 data encoded using our DER semantics is non-
malleable. It yields veri�ed code that parses valid binary
representations into values of the corresponding ASN.1 data
type while rejecting invalid ones.

We empirically con�rm that our semantics models ASN.1
DER usage in practice by evaluating ASN1★ parsers extracted
to OCaml on both positive and negative test cases involving
X.509 certi�cates and Certi�cate Revocation Lists (CRLs).

CCS Concepts: • Security and privacy→ Logic and veri-

�cation.

Keywords: Formal veri�cation, Parsing, Domain-speci�c
Language, ASN.1

CPP ’23, January 16–17, 2023, Boston, MA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0026-2/23/01.

h�ps://doi.org/10.1145/3573105.3575684

ACM Reference Format:

Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ra-

mananandro, and Nikhil Swamy. 2023. ASN1★: Provably Correct

Non-malleable Parsing for ASN.1 DER. In Proceedings of the 12th

ACM SIGPLAN International Conference on Certi�ed Programs and

Proofs (CPP ’23), January 16–17, 2023, Boston, MA, USA. ACM, New

York, NY, USA, 15 pages. h�ps://doi.org/10.1145/3573105.3575684

1 Introduction

Abstract Syntax Notation One (ASN.1) is a data type declara-
tion language standardized by both ITU-T and ISO/IEC since
1984.1 It is used for exchanging structured data between
platforms in a variety of settings, notably in the X.509 [12]
standard for public-key certi�cates. The latter forms the cor-
nerstone of digital identities and secure communication on
the Internet and, as such, the ASN.1 and X.509 standards and
their implementations are security critical components of
societal infrastructure.
The ASN.1 language supports describing structured data

of many varieties, including a wide collection of base types,
products, sums, sequences, and sets. For example, we give be-
low an ASN.1 declaration for two-dimensional points, where
the base type INTEGER denotes integers of arbitrary size.

Point2D ::= SEQUENCE { x INTEGER, y INTEGER }

ASN.1 declarations can be grouped into ASN.1 modules.
For example, the format of X.509 certi�cates is one such
ASN.1 module. We give below its top-level declaration, a
triple of �elds:

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

signature BIT STRING }

where tbsCertificate is the certi�cate contents ‘to be
signed’ using signatureAlgorithm, and signature is the
resulting signature value.
ASN.1 decouples data type declarations from their for-

mats. It provides several classes of encoding rules that gov-
ern the wire format of data types, one of which known as

1h�ps://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

275

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3573105.3575684
https://doi.org/10.1145/3573105.3575684
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3573105.3575684&domain=pdf&date_stamp=2023-01-11

CPP ’23, January 16–17, 2023, Boston, MA, USA Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ramananandro, and Nikhil Swamy

the distinguished encoding rules or DER, following the gen-
eral tag-length-contents encoding pattern. For example, the
point (0, 0) is encoded into the 8-byte string "30 06 02 01 00
02 01 00" where 30 is the tag locally assigned to points in
their ASN.1 module, 02 is the primitive tag of integers, and
06, 01, 01 encode their content lengths.
DER are designed to ensure that every value of a given

ASN.1 type has a distinct, canonical wire format representa-
tion. That is, DER formats are intended to be unambiguous

and non-malleable, in the sense that given a bit string 1 that
encodes a value E , every parser will yield back E , whereas
changing any bit in 1 either produces an invalid represen-
tation or yields a distinct value E ′ ≠ E . These properties are
particularly important in security applications, inasmuch as
they depend on values E but apply cryptographic protection
only on binary formats 1. In particular, the X.509 standard2

requires that certi�cates be formatted using DER, to pre-
vent any ambiguity between the claims signed by the issuer
in tbsCertificate and their interpretation by the relying
party after verifying the signature.
Despite the maturity of the standard and the presence of

libraries in several languages that support their use, ASN.1
and DER have a reputation for being di�cult to master. Im-
plementations have su�ered from parsing bugs that have
led to critical vulnerabilities. For example, Marlinspike [23]
discovered that Microsoft’s CryptoAPI component would
incorrectly parse a string containing a null character in a
domain name in the subject’s Common Name (CN) �eld of
an X.509 certi�cate, e.g., parsing the string "a.com\0b.com"
as "a.com" thereby misinterpreting the certi�cate issuer’s
intent and enabling an attacker to spoof a certi�cate to carry
out a man-in-the-middle attack. This is a classic example of
security vulnerability due to the use of a malleable parser—
the parser simply ignores the content of the string after the
null character. We discuss other security vulnerabilities re-
lated to X.509 parsing in §4. Of course, many vulnerabilities
discovered in implementations of X.509 and related stan-
dards involve software �aws beyond parsing (e.g., in certi�-
cate chain validation [6])—however, ensuring that parsing is
correct and non-malleable is a necessary basic requirement.

ASN1★: A Formalization of ASN.1 DER. Our long-term
ambition is to provide high-assurance implementations of
tools to parse and serialize data to and from ASN.1 DER,
and to build provably correct cryptographic applications
upon such tools. This paper presents a �rst milestone to-
wards that long-term goal, namely ASN1★, a mathematical
formalization of ASN.1 DER, deeply embedding its syntax
and providing several related denotational semantics within
the F★ proof assistant [31]. It provides a precise, mathemati-
cal basis on which to understand and further study a widely
used Internet standard that has, to date, only been speci�ed
in several voluminous natural-language documents.

2h�ps://www.rfc-editor.org/rfc/rfc5280

We formalize the syntax of ASN.1 DER as a family of
mutually inductive indexed types, the primary one being
declaration : set id_t→ Type, the type of a single ASN.1 dec-
laration. For example, Point2D and Certificate are repre-
sented in F★ as instances of declaration. The index on
declaration enforces a certain well-formedness property on
ASN.1 DER speci�cations, a form of static discipline dis-
cussed in §2.
We provide two related denotational semantics. First, a

type denotation asn1_as_type : declaration s→ Type that inter-
prets every well-formed ASN.1 DER declaration as a type in
the meta-language, i.e., F★. For example, the type denotation
of Point2D is an F★ pair of mathematical integers, int & int.
Second, a parser denotation that interprets every declaration
as a pure function from a sequence of bytes (a DER wire
format) to either a value of its type denotation or an error.
Our main theorem, outlined below

val asn1_as_parser : (d:declaration s)→ parser (asn1_as_type d)

establishes that our parser denotation can be typed as a
parser, the type of correct, non-malleable parsers de�ned
in the EverParse framework [27], applied to our type deno-
tation. (§A provides background on F★ and EverParse.) That
is, we show that every well-formed ASN.1 DER declaration
can be interpreted both as an F★ type and a non-malleable
parser from a sequence of bytes to that type.
A key technical contribution of our development is that

it yields a compositional semantics of ASN.1 DER where,
despite complications of the standard such as optional ele-
ments, default elements, and local retagging, (which require
careful custom treatment) our top-level theorem still o�ers
a clear, canonical correctness and non-malleability result in
terms of EverParse’s parser abstraction. To this end, we also
contribute new parser combinators, notably for sequence,
choice, and state-machine-based parsers, together with their
proofs of correctness and non-malleability.

Validating ASN1★. To validate that our formalization cor-
responds to the practice of ASN.1 DER in existing standards
and interfaces, we use F★’s extraction mechanism to pro-
duce, for selected ASN.1 declarations expressed as instances
of v : declaration s, functions in OCaml that parses a sequence
of bytes. We wrote ASN1★ format declarations for X.509
version 3 certi�cates, covering its most popular extensions,
and tested our extracted OCaml parser on a corpus of more
than 10,000 certi�cates, including both positive and nega-
tive test cases, con�rming that we correctly handle them all.
We also tested on a further ∼2,000 (mostly ill-formed) cer-
ti�cates dataset produced by fuzzing, and again con�rmed
that we correctly handle them all. We also wrote a ASN1★

format declarations for Certi�cate Revocation Lists (CRLs)
and evaluated our parsers on ∼4,000 CRLs found in the wild.

Extensions and Limitations. Our formalization aims to
cover a practical version of ASN.1 DER, su�cient to express

276

https://www.rfc-editor.org/rfc/rfc5280

ASN1★: Provably Correct Non-malleable Parsing for ASN.1 DER CPP ’23, January 16–17, 2023, Boston, MA, USA

many formats used in the wild. We support features that
are not core to ASN.1 but are commonly used in informal
side conditions. For example, many speci�cations prescribe
additional formatting constraints in natural language, e.g.,
X.509 has a notion of expansion lists, which our formalization
does cover. On the other hand, we do not support a form of
set that is seldom used with DER and does not occur in our
case studies (see §3.1.2).

Although our formalization o�ers executable OCaml code
for parsing, we have not attempted to optimize this code at all,
andmake no claims about its e�ciency. Indeed, as mentioned
earlier, we see our work as “merely” the formal foundation
towards producing in the future high-performance, provably
correct, low-level implementations of ASN.1 DER parsers
and serializers, and cryptographic applications to be built
using them, including certi�cate chain and policy validation.
In summary, our contributions include:

1. The �rst formalization of ASN.1 DER, providing a basis
on which to understand long-standing, widely used
natural language standards. Our main theorem proves
that all well-formed ASN.1 DER speci�cations induce
non-malleable parsers.

2. New correct- and non-malleable-by-construction
parser combinators for sequences, choice, and state-
machine-based parsers.

3. An experimental validation of our formalization by
evaluating the parsers from our semantics on a corpus
of ASN.1 DER formatted data in the wild, including
for X.509 and CRL, con�rming that our semantics is
faithful to the intent of the o�cial standard.

ASN1★ is publicly available as a pull request into EverParse:
h�ps://github.com/project-everest/everparse/pull/66.

2 A Brief Primer on ASN.1 and DER

Figure 1 presents an informal summary of the concrete syn-
tax of ASN.1, distilled from the ITU’s X.680 standard [19].
Figure 2 shows an actual snippet of ASN.1 declaring the
type of X.509 to-be-signed certi�cate contents introduced
in §1. We use them to establish some basic concepts and
intuitions, and to convey some of the challenges involved in
their formalization, presented next in §3.
An ASN.1 module declares a collection of data types, in-

cluding �nite sums, dependent and non-dependent prod-
ucts, variable-length sets and lists over a collection of base
types. Each module is a list of declarations; each declara-
tion associates a name with either a constant value (such as
an object identi�er) or a data type, and may refer to prior
declarations by name. In Figure 2, for example, Version and
AlgorithmIdentifier refer to prior declarations in scope.

A data type is either a terminal, such as an integer, or a type
constructed frommore basic types: a SEQUENCE is the prod-
uct of a given list of �eld names 58 and decorated declarations,
where the decorations can marks a �eld as optional, provide

a default value when the �eld is omitted, and modify its
tag—we discuss this in detail shortly; a SEQUENCE OF is a
list of an arbitrary number of C-typed elements; the CHOICE
constructor is the sum of a given list of data types. ASN.1
also o�ers SET and SET OF constructors that are unordered
analogs of SEQUENCE and SEQUENCE OF.
A design goal of ASN.1 is to decouple type declarations

from their binary formats. To this end, ASN.1 settles on an
encoding scheme where all data type values are encoded in
binary as identi�er-length-content (ILC) tuples—the precise
form of these tuples varies between the di�erent encoding
rules that ASN.1 provides, DER, our focus, being among
them. The identi�er, or tag, mainly serves as an indicator for
the type of the value, for example, to distinguish between
di�erent cases of sum. The length speci�es the length of
the content �eld in bytes and eliminates ambiguity when a
binary string can be fragmented in di�erent ways. Although
the identi�er and the length �elds are not always necessary,
they usually do not cause much overhead, and they enable
applications to skip over contents in binaries.

Primitive ASN.1 types have their own built-in identi�ers.
For example, the type INTEGER has identi�er 02 (in hex),
so 0 is in ASN.1 DER as 02 01 00, where the �rst byte is the
identi�er for integers, the second is the length of the content
(1 byte); and 00 is the content itself.

ASN.1 allows users to override the (otherwise decoupled)
binary encoding of identi�ers for their declarations with the
IMPLICIT decoration. For example, one can declare
MYINT ::= [1] IMPLICIT INTEGER, and the encoding of 0 as
a MYINT becomes 81 01 00. The identi�er byte 81 expanded
in binary digits is 10 0 00001, where the �rst two bits indicate
that this is a context-speci�c user-de�ned identi�er, the next
bit indicates that the data type is primitive, and the last 5
bits encode the user-chosen constant 1.
Identi�er formats are actually variable-length. For exam-

ple, a long identi�er such as [128] IMPLICIT takes 3 bytes: the
�rst byte is 10 0 11111, where the �rst 3 bits are as before, but
the last �ve signal a long-form identi�er. The next two bytes
are 1 0000001 and 0 0000000, where the leading bit of the �rst
byte signals that more bytes are to follow, and the leading
bit of the third byte signals that this is the �nal byte of the
identi�er, overall representing 8 bits spread across the last
two bytes. Note that a correct parser must reject unnecessary
long forms, as they would break non-malleability.
ASN.1 also allows to wrap an encoding within a custom

ILC tuple with the EXPLICIT decoration. For example, the
encoding of 0 as a WRAPPED_INT ::= [1] EXPLICIT INTEGER

is A1 03 02 01 00, where the leading A1 in binary is 10 1 00001,
representing a constructed user-de�ned short identi�er; the
length of the wrapped contents is 3; and the content itself is
the built-in encoding of 0.
ASN.1 has further decorations to mark certain �elds in

sequence as optional, or optional with default values. For
example, in a TBSCertificate the Version �eld may be omitted

277

https://github.com/project-everest/everparse/pull/66

CPP ’23, January 16–17, 2023, Boston, MA, USA Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ramananandro, and Nikhil Swamy

2 ::= INTEGER | BITSTRING | . . . Terminals

C ::= 2 | SEQUENCE {51 g1, . . . , 5= g=} Declarations

| CHOICE {51 g1, . . . , 5= g=}

| SEQUENCE OF C | SET OF C | . . .

g ::= C | g OPTIONAL | g DEFAULT E Decorated decls

| [=] EXPLICIT g | [=] IMPLICIT g

Figure 1. Informal syntax of ASN.1

TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT Uid OPTIONAL,

subjectUniqueID [2] IMPLICIT Uid OPTIONAL,

extensions [3] EXPLICIT Extensions OPTIONAL }

Figure 2. An ASN.1 declaration from X.509

in binary format, which must be interpreted as the constant
v1 (a value in scope), and any of the last three �elds may
also be omitted. This complicates parsing, and motivates
the use of IMPLICIT and EXPLICIT identi�ers to prevent any
ambiguity. For example, when parsing the optional �eld Uid,
if the next byte encodes the identi�er for [1] IMPLICIT, then
the content must be a Uid, but if it encodes the identi�er for
[3] EXPLICIT, then both Uid �elds are absent, and one should
start parsing the extensions. (Binary encodings of Extensions
may start with any identi�er, hence the need to wrap them.)

To ensure that a declaration can be unambiguously parsed
there are various well-formedness conditions, e.g. all the
�elds in a consecutive block of OPTIONAL and DEFAULT

�elds, and the plain �eld that immediately follows them
(if any) must have distinct identi�ers. As such, not every
syntactic instance of an ASN.1 declaration is admissible.

3 ASN1★

Figure 3 summarizes our formalization of ASN.1. In §3.1,
we present an intrinsically typed syntax for ASN.1, whose
typing constraints ensure the well-formedness of ASN.1 dec-
larations. We o�er some syntactic conveniences to help tran-
scribe ASN.1 concrete syntax into our formal ASN1★ nota-
tion, though the correspondence is only established empiri-
cally. In §3.2, we show that every well-formed ASN1★ term
can be denoted as an F★ type. This part of our semantics is
independent of the binary format, in keeping with the ASN.1
view that the type declarations and binary representations
are to be decoupled. §3.3 contains the main formal result of
the paper, namely that every ASN1★ term has a denotation as
a non-malleable parser for values of the type denotation. Our

Figure 3. Architecture of our development

parser semantics yields OCaml code for parsing ASN.1 DER
formatted data, and in §4 we test our code against concrete
ASN.1 DER binary formatted data to con�rm empirically
that our semantics is faithful to the ASN.1 DER standard.

3.1 Syntax and Well-Formedness of ASN.1

Figure 4 shows the formal syntax and well-formedness rules
of ASN1★. We omit the de�nition of terminal_k, the lan-
guage of terminal types, and their interpretation as F★ types,
terminal_t : terminal_k→ Type. The content type is the core
syntax of taggable content, while the declaration type asso-
ciates an identi�er with a content term—we leave the length
out of the speci�cation, since it is a dynamically computed
value. The d_declaration type associates a decoration with
an declaration value, and decorated and decorateds are just ab-
breviations. For compactness, we adopt a convention where
free names are universally bound as implicit parameters at
the top of the type of each constructor.

3.1.1 Identi�ers. The type id_t below models identi�ers,
as explained in §2. For example, the identi�er [2] IMPLICIT

encoded as byte 10 0 00010 has class CONTEXT_SPECIFIC, �ag
PRIMITIVE, and value 2. We bound identi�er values to 32 bits,
though we could have also chosen to use unbounded integers
in F★—identi�ers longer 32 bits are very uncommon.

type id_class_t = | UNIVERSAL | APPLICATION | PRIVATE

| CONTEXT_SPECIFIC

type id_flag_t = | PRIMITIVE | CONSTRUCTED

type id_t = {class:id_class_t; flag:id_flag_t; value:U32.t}

3.1.2 The content Type. The TERMINAL constructor sup-
ports a form of decidable re�nement. For example, to repre-
sent the type of natural numbers less than 4, one can write
TERMINAL INTEGER (_v→ 0 ≤ v && v < 4). Similar side condi-
tions expressed in natural languages are not strictly a part of
ASN.1 as a data format language. But they are very common
in the speci�cations that use ASN.1. While complex semantic
properties, for instance, the validity of a signature, are out of

278

ASN1★: Provably Correct Non-malleable Parsing for ASN.1 DER CPP ’23, January 16–17, 2023, Boston, MA, USA

1 type decorator = | PLAIN | OPTION | DEFAULT

2 type content : Type =

3 | TERMINAL :

4 k:terminal_k→

5 is_valid:(terminal_t k→ bool) →

6 content

7 | SEQUENCE : decorateds → content

8 | SEQUENCE_OF : declaration s→ content

9 | SET_OF : declaration s→ content

10 | PREFIXED : declaration s→ content

11 | ANY_DEFINED_BY :

12 prefix:list decorated →

13 id:id_t → key:terminal_k→

14 kvs:list (terminal_t key & decorateds) →

15 def:option decorateds→

16 squash (wf_any prefix id kvs) →

17 content

18

19 and declaration : set id_t→ Type =

20 | ILC : id:id_t→ content → declaration (singleton id)

21 | CHOICE_ILC :

22 choices:list (id_t & content) →

23 squash (no_repeats (map fst choices)) →

24 declaration (as_set (map fst choices))

25 | ANY_ILC : declaration (complement empty)

26

27 and d_declaration : set id_t→ decorator → Type =

28 | PLAIN_ILC : k:declaration s→ d_declaration s PLAIN

29 | OPTION_ILC : k:declaration s→ d_declaration s OPTION

30 | DEFAULT_TERMINAL :

31 id:id_t→

32 is_valid:(terminal_t k→ bool) →

33 defaultv:terminal_t k →

34 squash (is_valid defaultv) →

35 d_declaration (singleton id) DEFAULT

36

37 and decorated = s:set id_t & d:decorator & d_declaration s d

38 and decorateds = items : list decorated &

39 squash (sequence_k_wf (map proj12 items))

Figure 4. Formal syntax and well-formedness

scope for a parser, simple cases such as a non-empty list or an
integer with bounds are easy to check. So we include them
in our formal language as re�nement types. SEQUENCE_OF,
and SET_OF are just like their informal analogs in Figure 1.
SEQUENCE is almost the case with an extra proof obligation
in decorateds. This proof term ensures that the identi�ers and
the decorators of the sequence do not lead to ambiguity. For
instance, the valid set of identi�ers of an option �eld cannot
intersect with the set of the following �eld.

PREFIXED models the wrapping of data types using EX-
PLICIT, e.g., ILC id (PREFIXED t) require that the inner type
be wrapped with identi�er id.

ANY_DEFINED_BY is the most complex content type. For
example, the X.509 speci�cation has a type for (mathemati-
cal) �elds of characteristic two for some elliptic curves, given
below in ASN.1 concrete syntax.

Characteristic−two ::= SEQUENCE {

m INTEGER, - Field size 2^m

basis OBJECT IDENTIFIER,

parameters ANY DEFINED BY basis }

This declares a record of an integer m, followed by an object
identi�er basis, and then some parameters whose legal values
are determined by the value of basis. The speci�cation also
includes (in natural language text) the basis/parameters pairs
that are supported. In the constructor ANY_DEFINED_BY,
the pre�x represents �elds (such as m) that precede the
keys and values. The �elds id and key are the identi�er and
type of the keys, which must be a terminal type (such as
OBJECT IDENTIFIER). The �eld kvs represents the supported
key-value pairs. The �eld def is an optional default value,
which some speci�cations use to represent a default case not
included in kvs. The �nal �eld is a proof obligation. (squash p

is the F★ type of proof-irrelevant proofs of p.) It con�rms
that the �elds in pre�x and id are well-formed, similar to the
case of SEQUENCE. It also excludes repeats in the kvs list and
its encodings.
Although ASN.1 includes a SET constructor, ASN1★ does

not support it. Much like SEQUENCE, SET is used to declare
a record, but with the intent that the ordering of its �elds
is unimportant. This is at odds with DER, which requires
that binary representations of elements of SET and SET_OF

be strictly sorted. We decided to fully support SET_OF but to
ignore SET, since it does not occur in any of our case studies;
it can usually be replaced with a SEQUENCE with the same
�elds and a simpler format; and it would require parsers for
corner cases such as

SET { [2] IMPLICIT INTEGER,

CHOICE { [1] IMPLICIT INTEGER,

[3] IMPLICIT INTEGER }}

which declares a pair of integers, but insists their binary
format order them by tags: either 1,2 or 2,3. (By contrast,
SET OF declares sets where all elements have the same type,
so we check their representations are strictly ordered but
need not consider re-orderings.)

3.1.3 The declaration Type. The declaration s type asso-
ciates an identi�er with a content type, where the index s

represents the set of valid �rst identi�ers that may be encoun-
tered in the binary format of the type—this is used below
in the well-formedness of decorated types. The CHOICE_ILC
is for a sum and associates a distinct identi�er with every
content type in the sum. Finally, the ANY_ILC is used to rep-
resent any identi�er-length-content tuple.

279

CPP ’23, January 16–17, 2023, Boston, MA, USA Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ramananandro, and Nikhil Swamy

3.1.4 The decorated Type. The type d_declaration asso-
ciates a decoration with an declaration type. The DEFAULT

case supports re�ned terminals and requires a proof that
the default value satis�es the re�nement. Rather than us-
ing d_declaration, we use its packaged variants decorated and
decorateds. The latter type enforces that all the �elds in a
consecutive block of OPTION and DEFAULT �elds, and the
PLAIN �eld that immediately follows them (if any) have
distinct identi�ers.

3.1.5 Smart Constructors. Writing a value of type
declaration directly from its constructors can be tedious, espe-
cially due to the proof obligations on several of the construc-
tors. To assist with this, we introduce a layer of smart con-
structors that internalize some of the proof obligations and
provide tactics for them. These constructors enable writing
speci�cations in our embedded declaration language in a style
relatively close to the concrete ASN.1 syntax, while also for-
mally capturing constraints that are typically left to natural
language in concrete speci�cations. For example, we give be-
low the speci�cation in ASN1★ of the Characteristic-two
declaration presented earlier, with an asn1_integer m as pre-
�x, followed by the key name basis, and a choice between
the three legal key-value pairs—the proof obligations are
dispatched by seq_tac and choice_tac, tactics we developed
for ASN1★.

let characteristic_two = asn1_any_oid_prefix

["m" ∗^ (PLAIN ^: asn1_integer)]

"basis"

[(gnBasis_oid, gnBasis_parameters);

(tpBasis_oid, tpBasis_parameters);

(ppBasis_oid, ppBasis_parameters)]

(_ by (seq_tac())) (_ by (choice_tac()))

In the future, we may leverage user-de�ned syntax exten-
sions proposed for F★ to streamline this further.

3.2 Denoting ASN1★ Declarations as F★ Types

Figure 5 shows our interpretation of ASN1★ syntax as F★

types, following the structure of the inductive type de�ni-
tions in Figure 4. In the spirit of ASN.1, this �rst denotational
semantics is independent of the binary representation.

3.2.1 Denoting content. TERMINAL t v is interpreted as an
F★ re�nement of the denotation of t. SEQUENCE ds is inter-
preted as an n-ary tuple, where n is the length of ds, followed
by a trailing unit (left here for simplicity, but optimized away
in our implementation). SEQUENCE_OF and SET_OF are both
denoted as lists. In principle, the latter could be quotiented
by a relation that equates lists up to permutation, though F★

lacks native support for quotient types. PREFIXED only a�ects
the binary format and has no e�ect on the type denotation.
ANY_DEFINED_BY is represented as a tuple beginning with
prefix followed by a sum de�ned by the kv association-list,
with an optional default case.

1 let rec content_t (k:content) : Type = match k with

2 | TERMINAL t is_valid→ x:terminal_t t { is_valid x }

3 | SEQUENCE ds→ decorateds_t ds

4 | SEQUENCE_OF k→ list (asn1_as_type k)

5 | SET_OF k→ list (asn1_as_type k)

6 | PREFIXED k→ asn1_as_type k

7 | ANY_DEFINED_BY prefix _ _ kv def _→

8 sequence_t prefix (choice_t (any_t kv) (def_t def))

9

10 and asn1_as_type (k:declaration s) : Tot Type (decreases k) =

11 match k with

12 | ILC id k→ content_t k

13 | CHOICE_ILC lc _→ choice_t (cases_t lc) ⊥

14 | ANY_ILC→ id_t & octetstring_t

15

16 and decorated_t (d:decorated) : Type =

17 let (| _, _, dk |) = d in

18 match dk with

19 | PLAIN_ILC k → asn1_as_type k

20 | OPTION_ILC k→ option (asn1_as_type k)

21 | DEFAULT_TERMINAL id is_valid defv→ default_tv defv

22

23 and decorateds_t (| l, _|) = sequence_t l unit

24

25 and def_t d = match d with

26 | None→⊥

27 | Some ds → decorateds_t ds

28

29 and any_t (ls:list (t & decorateds)) : Tot _ (decreases ls) =

30 match ls with

31 | [] → []

32 | (x, ds) :: tl → (x, decorateds_t ds) :: any_t tl

33

34 and choice_t (lc:list (key & Type)) (def:Type) =

35 k:key & assoc k lc def

36

37 and cases_t (lc:list (id_t & content)) : list (id_t & Type) =

38 match lc with

39 | []→ []

40 | (x,y) :: t→ (x, content_t y) :: cases_t t

41

42 and sequence_t (items:list decorated) (su�ix_t:Type) : Type =

43 match items with

44 | []→ su�ix_t

45 | hd :: tl→ decorated_t hd & sequence_t tl su�ix_t

Figure 5. Denoting ASN.1 de�nitions as F★ types

3.2.2 Denoting declaration. In an ILC id k, the identi�er
id concerns only the binary format. The CHOICE_ILC lc case
maps the content_t interpretation over the list of cases, and
then forms a (strong) sum type, aka a dependent pair, where
the type is uninhabited in the case of an unexpected iden-
ti�er. Finally, ANY_ILC is just a pair of an identi�er and a

280

ASN1★: Provably Correct Non-malleable Parsing for ASN.1 DER CPP ’23, January 16–17, 2023, Boston, MA, USA

string of bytes. Although we could have written helper func-
tions like any_t and cases_t using combinators like map, F★’s
termination checking rules make it much easier to write
explicit, mutually recursive de�nitions in place. Additionally,
the termination checker needs a couple of hints in the form
of decreases annotations to accept this de�nition.

3.2.3 Denoting Decorated Types. The denotation of dec-
orated types is straightforward, with PLAIN having no im-
pact; OPTION denoted as an option; and DEFAULT_TERMINAL

denoted as default_tv defaultv, a re�ned form of option with
constructors Default and Nondefault of (v:_ { v ≠ defaultv }).

3.2.4 Terminals. Our semantics of terminals formally cap-
ture the properties of manyASN.1 types previously described
only in natural language. We omit the details, and only dis-
cuss the UTF8String terminal, loosely de�ned in the standard
as any byte string tagged with a special identi�er, followed
by 13 pages of English text for the actual speci�cation. The
intended usage is to �rst parse its contents as a byte sequence,
then to separately check that it is a valid UTF8String. Instead,
we encode those constraints directly with F★ propositions
and inductive types, and we prove that our parser, described
next, only accepts values of this more precise type.

3.3 A Constructive Formalization of DER

The main formal result of this paper, summarized in this
section, is that every ASN1★ type de�nition t : declaration s

can be interpreted as a parser asn1_as_parser t of a byte se-
quence representation of asn1_as_type t. The speci�c format
accepted by our parsers is intended to represent ASN.1 DER.
We prove that the parser asn1_as_parser t is injective, i.e., for
every v:asn1_as_type t there exists at most one valid binary
representation.3 Thus, ASN.1 DER is a non-malleable format.
Injectivity of parsers is a relational property or a hyper-

property [11]. Proofs of hyperproperties are known to be
challenging, with many special- and general-purpose logics
proposed for various classes of hyperproperties [3–5, 18].
For the speci�c scenario of proving injectivity properties of
parsers, the EverParse [27] library o�ers a family of injective-
by-construction parser combinators. The library is structured
around a type called parser k t, outlined below.

let parser (k:parser_kind) (t:Type) =

p:(b:bytes → option (t & n:nat { n ≤ length b }) {

has_kind k p ∧

(∀ b0 b1. match p b0, p b1 with

| Some (v0, l0), Some (v1, l1)→

v0 == v1 =⇒ slice b0 l0 = slice b1 l1

| _→⊤) }

3The converse property, that every v:asn1_as_type t has at least one valid
binary representation is not guaranteed by our proofs, though we test the

non-triviality of the generated parsers empirically. Furthermore, EverParse

takes parsers as the primary building block, and de�nes serializers correct

with respect to parsers. This choice is arbitrary, the converse design is also

plausible.

In addition to injectivity, EverParse provides a language
of parser kinds that characterize various other properties. For
our purposes, we are interested in only two parser kinds,
strong and weak, where strong parsers are insensitive to in-
put extension. That is, appending any bytes to the input
does not change the return value of a strong parser. We
write weak_parser and strong_parser instead of parser weak

and parser strong. Kinds are combined according to a small
algebra, but we refer the reader to prior work on EverParse
for the details.

EverParse provides several basic parsers and combinators
to compose parsers, e.g., parse_u8 to parse a single byte, or
nondep_then to parse two values in sequence while returning
them as a pair. The type of combinators like nondep_then

encodes a proof rule which ensures that the sequential com-
position of injective parsers is injective.

val parse_u8 : parser u8_kind U8.t

val nondep_then (p0:parser k0 t0) (p1:parser k0 t1)

: parser (and_then_kind k0 k1) (t0 & t1)

In giving a parser denotation to ASN.1, the main chal-
lenge was to de�ne a compositional semantics so that both
their type-correctness (that they parse well-typed values
according to the type denotation) and their injectivity fol-
low structurally. In the process, we also extended EverParse
with new general-purpose, injective-by-construction parser
combinators, notably a combinator parameterized by a state
machine, which should be of interest and applicability be-
yond the context of ASN.1 and DER.

3.3.1 MainTheorem. Figure 6 shows a few selected pieces
from the parser denotation of ASN1★. The type of
asn1_as_parser (reproduced below for clarity) is our main
theorem: every ASN1★ declaration k:declaration s can be in-
terpreted as a strong injective-by-construction parser return-
ing a value of type asn1_as_type k, the type denotation of
ASN1★. Since a parser is a total function, this proof is also
constructive in the sense that it yields executable code for a
parser for any ASN1★ type de�nition.

val asn1_as_parser (#s:set id_t) (k : declaration s) :

parser strong (asn1_as_type k)

The proof of this theorem is the bulk of our development,
comprising about 6,000 lines of F★ code. Next, we summarize
a few of the main ideas behind the proof.

3.3.2 Content, LC, and ILC Parsers. At the top-level of
our semantics (Figure 6 line 6) content_as_parser interprets a
k:content as a weak_parser (content_t k). A bare content parser
is not a strong parser—for example, a sequence parser would
accept additional elements appended at the end of its input—
but it can be strengthened by �rst parsing a length and then
requiring that the content consume exactly the speci�ed
number of bytes. We thus de�ne strong length-content (LC)
parsers, using length �eld parsers and a combinator that

281

CPP ’23, January 16–17, 2023, Boston, MA, USA Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ramananandro, and Nikhil Swamy

1 let dlc_parser t = lc:(id_t →

strong_parser t) {cases_injective lc}

2 let twin_t t = strong_parser t & dlc_parser t

3 type twin = { d: decorated; ps:twin_t (undec_d_t d) }

4 let twins ds = lp : list twin_d{map (_ x→ x.d) lp == ds}

5

6 let rec content_as_parser (k:content)

7 : weak_parser (content_t k) =

8 match k with

9 | TERMINAL k v→

10 weaken ((terminal_as_parser k) `filter` v)

11 | SEQUENCE (| ds, _ |)→

12 mk_seq_parser (seq_as_twins ds)

13 . . .

14 and asn1_as_parser (k : declaration s)

15 : strong_parser (asn1_as_type k) =

16 match k with

17 | ILC id k' → parse_ILC id (content_as_parser k')

18 . . .

19 and seq_as_twins (ds : decorateds) : twins ds

20 match ds with

21 | []→ []

22 | hd :: tl→ decorated_as_twin hd :: seq_as_twin tl

23 . . .

24 and decorated_as_twin (d:decorated)

25 : (tw:twin {tw.d == d}) =

26 let (| _, _, dk |) = d in

27 match dk with

28 | PLAIN_ILC k | OPTION_ILC k→

29 { d; ps=asn1_as_twin k }

30 | . . .

31 and asn1_as_twin (k : declaration s)

32 : twin_t (asn1_as_type k) =

33 match k with

34 | ILC id k' →

35 let p = content_as_parser k' in

36 ilc_twin_case_injective id p; (∗ lemma ∗)

37 parse_ILC id p, parse_ILC_twin id p

38 | CHOICE_ILC lc pf→

39 let lp = cases_as_parser lc in

40 choice_twin_cases_injective lc pf k lp; (∗ lemma ∗)

41 make_choice_parser lc pf k lp,

42 make_choice_parser_twin lc pf k lp

43 . . .

Figure 6. The parser denotation of ASN1★ (fragments)

invokes the content parser on the input byte sequence trun-
cated to a speci�c length. We obtain an ILC parser (line 17)
by �rst parsing a leading identi�er. The identi�er parser it-
self involves a non-trivial, automata-like logic; it is based on
a combinator described in §3.4.
For a given ASN.1 declaration, some identi�ers may be

fully determined by the context, and may thus be omitted.

Some more compact ASN.1 encodings, e.g., the Packed En-
coding Rules, include optimizations to eliminate redundant
identi�ers, but they are not widely adopted due to their in-
creased complexity and marginal bene�ts. The DER does not
include such optimizations.

3.3.3 Sequence Parsers. Sequences would be simple to
parse if all their �elds were always present, but this is not the
case with �elds decorated with OPTION or DEFAULT. More
generally, the well-formedness constraints on SEQUENCE

ensure that any consecutive block of omittable �elds and
the plain �eld (if any) that immediately follows must have
distinct identi�ers, so one can use the next identi�er value
to tell which �eld comes next and which ones should take
their default value. However, this breaks the one-to-one cor-
respondence between identi�er and ILC tuple, hence a �rst
challenge for parsing sequences is handling dangling iden-
ti�er, that is, single identi�ers that determine the values of
multiple �elds. A second challenge is to handle omittable suf-
�xes, since, for example, an empty string is a valid encoding
of a sequence whose �elds are all optional or default.

3.3.4 Dependent LC and Twin Parsers. To tackle the
resolution of dangling identi�ers, we introduce an alternate
form of LC-parsers that depend on a previously-parsed iden-
ti�er. That is, a p:dlc_parser t (Figure 6 line 1) expects an
identi�er i and ensures that p i is a strong_parser t, while guar-
anteeing that p i is injective in i—di�erent values of i must
return parsers that accept di�erent values. By decoupling
the parsing of identi�ers and the length-content, we can
construct sequence parsers while accounting for optional
and default �elds. When a block of omittable �elds is en-
countered, our sequence combinator �rst parses an identi�er
and tries to match it against the set of identi�ers for each
�eld. If the identi�er matches, the dlc_parser for the (undec-
orated) �eld is invoked, using the identi�er that was just
parsed. If the identi�er does not match, the omittable �eld
is �lled with the default value and the dangling identi�er is
passed to the next �eld. In some cases it is useful to interpret
a decorated type (line 24) both as a standard ILC parser as
well as a dlc_parser for its underlying undecorated form—we
call these twin parsers (line 3).

3.3.5 Defaultable Parsers. We solve the problem of omit-
table su�xes with a new parser combinator called defaultable,
which overrides the behavior of an existing parser when an
empty string is encountered by returning a pre-determined
value. To maintain injectivity, it requires the underlying
parser to never return the default value.

3.3.6 Choice Parsers. As we’ve seen, the type denotation
of a CHOICE_ILC is a dependent pair. As such, if two dif-
ferent cases have the same underlying type, they are still
distinguishable, since the identi�er of the cases di�ers. The
well-formedness condition on ASN1★ de�nitions ensures
that the identi�ers for all the cases must be distinct. We

282

ASN1★: Provably Correct Non-malleable Parsing for ASN.1 DER CPP ’23, January 16–17, 2023, Boston, MA, USA

Table 1. Encoding Unicode points to UTF-8

Range Byte 1 Byte 2 Byte 3 Byte 4

≤ U+007F 0xxxxxxx

≤ U+07FF 110xxxxx 10xxxxxx

≤ U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

≥ U+10000 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

implemented the ASN.1 choice combinator with a generic
tagged union combinator provided by EverParse, which �rst
reads the identi�er value, then looks it up in the list of cases.
Once a match is found, the parser for the corresponding
element is invoked to handle the rest of the input.

3.3.7 Any-de�ned-by Parsers. ANY_DEFINED_BY also
roughly assembles a tagged union. However, it di�ers from
CHOICE in that it uses an explicit �eld (usually an object iden-
ti�er) in the context of a sequence instead of a tag. Further-
more, its payload is a list of decorated sequence �elds, instead
of a single piece of content. We implemented a generic parser
for ANY_DEFINED_BY by combining the techniques we used
for choice and sequence parsers. First, a potential pre�x of
decorated �elds is parsed (which may leave a dangling iden-
ti�er), then the key �eld is parsed, its value is compared to
the list of known values and, if a match is found, the cor-
responding continuation is invoked, otherwise the fallback
parser is invoked.

3.4 Automata-Based Parser Combinator

While EverParse o�ers a variety of generic parser combina-
tors, building multi-step parsers with branches and loops
can be burdensome because relational proofs of parser kinds
and injectivity must be provided for the continuation of each
step before the combinators can be assembled. We devel-
oped a new parser combinator for generic, automata-based
parsers that simpli�es the construction of such proofs, and
used this combinator to build parsers for several terminal
types, including, notably, UTF-8 code points, which we use
to illustrate the design of our automata parser combinator.
The ASN.1 speci�cation requires handling the

UTF8STRING terminal type, which is a sequence of valid
Unicode code points, up to 21-bit values, each encoded in
UTF-8, which takes between one and four bytes (see Table 1).
A code point may have more than one representation, by
using more bytes than necessary and �lling the highest bits
with 0s. To maintain non-malleability, the standard thus re-
quires that each code point be encoded with the minimal
number of bytes.

It is natural to structure a parser for UTF-8 code points as
an automaton that reads one byte at a time and, whenever it
accepts a code point, emits its value as an integer in 0..221−1.
For this, it is convenient to maintain auxiliary state that
keeps track of the bit pre�x of the code point parsed, rather
than encoding this memory in the states of the automaton
itself—we refer to this auxiliary state as a "bu�er".

Table 2. Transitions for the initial state and the �rst byte

Bit Pattern Action

0xxxxxxx Accept, return the byte value

10xxxxxx Reject: invalid �rst byte

1100000x Reject: not using minimum number of bytes

110xxxxx Transit to (1 with bu�er xxxxx

11100000 Transit to (′
2
for extra checks

1110xxxx Transit to (2 with bu�er xxxx

11110000 Transit to (′
3
for extra checks

11110xxx Transit to (3 with bu�er xxx

11111xxx Reject: invalid �rst byte

For example, Table 2 gives the transitions from the initial
state, depending on the value of the �rst byte. Similarly, the
other states have di�erent transitions depending on the byte
they read. They all check that their input is of form 10xxxxxx,
then (1 adds bits to the bu�er and returns the content; (2
and (3 add bits to the bu�er; (

′
2
and (′

3
check the encoding is

minimal and initialize the bu�er with the correct bits. The
transitions to (2′ and (3′ mention extra checks needed to
ensure the uniqueness of representations, e.g., the 2 byte
encoding allows representing code points encoded in 8–11
bits, while 3 bytes must only be used to encode values that
require 12–16 bits.

Our automata combinator supports de�ning parsers with a
“control plane” and a “data plane.” The control plane contains
the states, the alphabet (a single byte in this case), and the
conditions for rejecting, accepting, and transitioning for each
state. The data plane describes the behavior of the bu�er.
For example, the control plane of Table 2 is captured by
three functions below, whereas the data plane for UTF-8
uses bitwise operations to reassemble the code points.

let reject_init (ch : byte) : bool

= (0b10000000 ≤ ch && ch ≤ 0b11000001) || 0b11111000 ≤ ch

let accept_init (ch : byte {reject_init ch = false}) : bool

= ch ≤ 0b01111111

let transit_init

(ch:byte {reject_init ch = false && accept_init ch = false})

: state

= if (ch < 0b11100000) then S1

else if (ch = 0b11100000) then S2'

else if (ch < 0b11110000) then S2

else if (ch = 0b11110000) then S3'

else (∗ ch < 0b11111000 ∗) S3

Given the description of the automata and a parser for
the alphabet (just a byte parser for UTF-8), the automata
combinator assembles a parser that follows the speci�cation
of the state machine.
The main novelty is the way in which our combinator

structures relational proofs of strong parser kinds and injec-
tivity. The strong parser kind property directly follows from

283

CPP ’23, January 16–17, 2023, Boston, MA, USA Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ramananandro, and Nikhil Swamy

the byte parser having this property. Injectivity is proven
by structural induction on the transitions of the automata.
This induction is performed automatically by the automata
combinator and reduces the goal to proving, for each state
of the automata, the injectivity of the su�x that it parses.
For UTF-8 code points, the initial state has three cases:
(1) If the initial state accepts both bytes 11 and 12, and

returns the same value, then 11 = 12. This is trivial because
the initial state returns the byte value.

(2) If the initial state accepts 11 but transits to another state
on 12, the �nal output will be di�erent. This holds because
the initial state’s return value is less than 2

7 while all other
states eventually returns larger values (since they correctly
reject over-long forms).

(3) If the initial state transits to other states that return the

same output values, then 11 = 12. If the next states di�er, then
the return values di�er because they have di�erent number
of bits. If the next states are the same, then the control bits
in 11 and 12 are the same. The induction hypothesis that the
su�x parser is injective shows the bu�er contents must be
the same, and thus 11 = 12.

Importantly, these proof goals are only propositions about
the control and data plane, and are separated from the low-
level parsing actions. In our implementation, all cases are
automatically veri�ed by the SMT solver backend of F★.

Our key insight of the automata combinator is the mono-
tonicity innate to multi-step parsers. Each step parses some
pre�x of the input and “consumes” it such that the later
steps can no longer depend on those bytes directly, but only
through the control state and the partial output bu�er. A
necessary condition for injectivity is that each step must
preserve enough information about the pre�x parsed so far
which also implies the information encoded in the control
state and the output bu�er must grow monotonically. This
is what enables the use of structural induction and to de-
compose the goal into smaller goals about individual states.
The manual proofs for each state veri�es that the amount of
information added in each step is equivalent to that in the
pre�x consumed.

4 Experimental Evaluation

We experimentally evaluate the precision and completeness
of our model by writing in ASN1★ some of the most com-
monly used ASN.1 formats, and by executing our formally-
veri�ed parsers on large corpuses of inputs collected from
real world internet usage, as well as synthetic invalid inputs
created for security testing via systematic fuzzing.

The parsers we use in the experiments are extracted from
the speci�cation-level parsers derived from ASN.1 declara-
tions (with as_parser) using the OCaml backend of F★, and
thus, they are much less e�cient than low-level in-place C
validators available for some other combinators in the Ever-
Parse library. We leave the extraction of optimized C code

to future work. All experiments are conducted on an Apple
Macbook laptop from 2021.

4.1 X.509 Certi�cates

Amajor use case of ASN.1 from its conception is to represent
cryptographic identities and credentials for internet com-
munication. Like ASN.1, X.509 is a standard created by the
International Telecommunication Union (ITU) in 1988 and
used to this day to encode digital certi�cates, which asso-
ciate entities to public keys and capture trust relations. X.509
certi�cates are critical to internet security: most websites,
and many individuals, are issued certi�cates to authenti-
cate themselves, for instance when creating a secure HTTP
connection (indicated by a padlock icon in many browsers).
There are certi�cate transparency logs that record the is-
suance of new certi�cates; at the time of writing (2022),
they collect an average of 5 million new entries every day.
Moreover, there is a long history of vulnerabilities in ASN.1
parsers causing major exploits in X.509 validation libraries.
Surprisingly, although the format of certi�cates has not sig-
ni�cantly evolved in the past 30 years, new vulnerabilities
are routinely found in well-established ASN.1 parsers. For in-
stance, looking at the history of documented attacks against
OpenSSL, the most popular secure channel and cryptography
library commonly used to validate certi�cates, new ASN.1
exploits4 were found in 2003 (4 occurences), 2006, 2012, 2015
(6 occurences), 2016 (4 occurences), 2018 and 2021. Interest-
ingly, the ASN.1 vulnerabilities are diverse: CVE-2021-3712
is a bu�er overrun caused by functions wrongly assuming
ASN.1-encoded strings are NULL-terminated (a problem sim-
ilar to a famous exploit by Eliot Phillips at Black Hat 2009
that allows an attacker to impersonate any website using
NULL bytes in the middle of domain names); CVE-2018-0739
results from recursive parsers causing stack over�ows; CVE-
2016-2108 is an interesting combination of vulnerabilities
in the INTEGER parser (which can over�ow when dealing
with the incorrect negative encoding of 0) and the ASN.1
tag parser (which could misinterpret a large universal tag
as a negative zero); CVE-2006-4339 is a famous attack by
Bleichenbacher that relies on the ASN.1 parser accepting
non-canonical serializations to forge RSA signatures. The
same trend is observed when looking at MITRE’s Common
Vulnerabilities and Exposures (CVE) database, which lists
ASN.1 vulnerabilities in the past 5 years in most operating
systems (Linux, iOS, tvOS, macOS) and cryptographic li-
braries (OpenSSL, NSS, MatrixSSL, worlfSSL, RSA BSAFE,
axTLS). Most are memory safety and functional correctness
issues that could be prevented by formally veri�ed parsers.

Format Declaration. Figure 7 shows the top-level ASN1★

declaration for X.509 certi�cates, translated from the ASN.1
declaration in RFC 5280 shown in Figure 2. We make a few

4h�ps://www.openssl.org/news/vulnerabilities.html

284

https://www.openssl.org/news/vulnerabilities.html

ASN1★: Provably Correct Non-malleable Parsing for ASN.1 DER CPP ’23, January 16–17, 2023, Boston, MA, USA

adaptations compared to the reference declaration; most no-
tably, we try to capture data dependencies in a more precise
way. The format of extensions and public keys depend on
tags (typically object identi�ers) whose possible values are
not fully speci�ed in the declaration (to leave the ability to
de�ne new ones in future revisions). For instance, extensions
use an identi�er to indicate their type, a boolean �ag to indi-
cate if the extension is critical, and an OCTET STRING that
will contain the ASN.1 serialization of the extension payload,
which depends on the extension type. An application is sup-
posed to go over the list of extension, and further parse the
payload using the right parser for this extension’s type. If
it encounters an extension with an unrecognized identi�er,
and the extension is marked critical, it must reject the certi�-
cate. It is useful to perform some of these application-level
checks in the parser itself, thus limiting the chance that the
checks are mishandled or omitted in the application. For ex-
ample, we extend ANY DEFINED BY with a default de�nition,
in case the identi�er’s value is not one of the speci�ed ones.
In this case, the fallback representation is the same as the
generic de�nition, but requires the critical �ag to be false:
The altered de�nition parses all supported extensions in a
single pass and guarantees critical unknown extensions are
rejected during parsing. Overall, our X.509 module consists
of 143 intermediate declarations in 608 lines of F★ code, and
can be found in ASN1.X509.fst.

Datasets. To evaluate our X.509 module, we use one public
dataset from the Electronic Frontier Foundation (EFF) [16]
consisting of certi�cates collected from the wild by scanning
the IPv4 address space, and a second synthetic dataset of
certi�cates that have been systematically altered to introduce
DER and ASN.1 violations, and is used as part of the OpenSSL
build tests to check for regressions.

The EFF dataset was created as part of the SSL Observatory
e�ort in August 2010 by trying to initiate a TLS handshake
with all reachable IPv4 addresses on port 443 (typically used
for HTTPS), and capturing the collected certi�cate chains.
The scan only captures objects that are at least recognized
by OpenSSL at the time of processing as a certi�cate, which
doesn’t mean that it is valid or well-formed. Indeed, many
of these certi�cates use unde�ned X.509 version numbers.
The dataset is not labelled so we must manually inspect the
rejected certi�cate to understand the cause of failure.
The OpenSSL dataset is used to check for regressions us-

ing libfuzzer each time the library is built. It contains a
corpus that captures all the known ASN.1 vulnerabilities
found in previous versions, and many variants produced by
fuzzing. By construction, all certi�cates in this dataset are
invalid; however, in some cases the error doesn’t appear dur-
ing parsing but during signature validation instead. Since we
only implement parsing, we do not detect errors introduced
after RSA encryption, e.g. in the payload of signatures.

let x509_TBSCertificate= asn1_sequence [

"version" ∗^ (PLAIN ^: (mk_prefixed (mk_custom_id

CONTEXT_SPECIFIC CONSTRUCTED 0) version));

"serialNumber" ∗^ (PLAIN ^: certificateSerialNumber);

"signature" ∗^ (PLAIN ^: algorithmIdentifier);

"issuer" ∗^ (PLAIN ^: name);

"validity" ∗^ (PLAIN ^: validity);

"subject" ∗^ (PLAIN ^: name);

"subjectPublicKeyInfo" ∗^ (PLAIN ^: subjectPublicKeyInfo);

"issuerUniqueID" ∗^ (OPTION ^: (mk_retagged

(mk_custom_id CONTEXT_SPECIFIC PRIMITIVE 1) uId));

"subjectUniqueID" ∗^ (OPTION ^: (mk_retagged

(mk_custom_id CONTEXT_SPECIFIC PRIMITIVE 2) uId));

"extensions" ∗^ (PLAIN ^: (mk_prefixed

(mk_custom_id CONTEXT_SPECIFIC CONSTRUCTED 3)

extensions))]

(_ by (seq_tac ()))

let x509_certificate = asn1_sequence [

"tbsCertificate" ∗^ (PLAIN ^: tBSCertificate);

"signatureAlgorithm" ∗^ (PLAIN ^: algorithmIdentifier);

"signatureValue" ∗^ (PLAIN ^: bitString)]

(_ by (seq_tac ()))

(∗ Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING ∗)

let extension_fallback = mk_gen_items [

"critical" ∗^ (DEFAULT ^: critical_field_MUST_false);

"extnValue" ∗^ (PLAIN ^: asn1_octetstring)]

(_ by (seq_tac ()))

let extension = asn1_any_oid_with_fallback

"extnId" supported_extensions extension_fallback

(_ by (seq_tac ())) (_ by (choice_tac ()))

Figure 7. Representing X.509 in ASN1★

Table 3. Results of running extracted X.509 and CRL parsers

Dataset Total Accept Reject Fail Time

EFF 11451105 10689353 761750 1

EFF (subset) 10138 9131 1007 0 198s

OpenSSL 2242 61 2181 0 30s

EFF CRL 4109 3388 703 18 68s

OpenSSL CRL 2063 15 2048 0 30s

Analysis of Results. The top part of Table 3 shows the re-
sults of running the X.509 module on the EFF and OpenSSL
datasets. Due to the large number of certi�cates in the EFF
X.509 dataset, we select a subset of 10,138 certi�cates by ar-
bitrarily taking the range of IP addresses from 108.0.100.238

to 109.95.49.5 to manually inspect each of the 1007 rejected

285

CPP ’23, January 16–17, 2023, Boston, MA, USA Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ramananandro, and Nikhil Swamy

certi�cates from that subset to determine what is the �rst
error. We manage to attribute all such failures to one of the
following classes:

Default Field Identi�er Terminal Type Empty Sequence

710 196 65 36

Default �eld means that an optional �eld contains its
default value, which is prohibited under DER. This error
appears either in the basic constraints extension, which is
used to indicate if a certi�cate can sign other certi�cates
or not, or in the parameters of RSA public key algorithm,
which must be NULL. Identi�ermeans the identi�er doesn’t
match those stated in the standard. Again, these cases are
often found inside an ANY structure. Issuer/subject �elds of
the certi�cate are prone to this kind of error. A typical case
is that the standard requires a more restrictive string type,
for instance the printable string, but the certi�cate uses a
general one, for instance an ASCII string. Terminal Type

is a class that includes all cases where a certain terminal
type, such as boolean and integer, is not encoded correctly.
A representative case is that of UTCTime, which require the
letter Z to be used at the end of the representation to denote
the Greenwich time instead of +/-0000 for non-malleability.
For another example, a peculiar certi�cate encoded a very
large integer but did not use least number of bytes for it.
These kinds of errors are hard to detect for conventional
parsers because they are niche cases for the implementation
of a particular terminal parser while the tests are usually
for the whole datatype. Empty Sequence occurs in certain
sequence of structures that cannot be empty. We found this
kind of error frequently shows up in extensions as well.
In summary, all 1007 rejected certi�cates are indeed in-

valid. Conversely, we cannot manually con�rm the 9,131
accepted certi�cates are indeed valid. Instead, we rely on our
results from the OpenSSL regression test. 97% of their cer-
ti�cates are indeed correctly rejected; we manually inspect
each of the accepted certi�cates and con�rmed that either
the error only appears in the signature (which we cannot
detect) or in an extension that we do not implement.

4.2 Certi�cate Revocation Lists

Format Declaration. The standard de�nition of the CRL
format can be found in the Section 5 of [12]. It is similar to
X.509 in the style of de�nition with its own extensions. Our
CRL module consists of 8 declarations in 69 lines of F★ and
can be found in ASN1.CRL.fst.

Datasets. We did not �nd any large public corpus of revoca-
tions lists, so we wrote a script that extracts the URLs where
the certi�cation authority publishes their CRL from the "CRL
distribution endpoint" certi�cate extension. We managed to
collect 4,109 samples with this method.

The OpenSSL regression tests also includes tests for CRLs,
which we use for negative testing. It contains 2,063 samples.

Analysis of Results. The bottom part of Table 3 shows
the results of running the CRL module on the 2 datasets. It
is worth noting that CRLs can be much larger than certi�-
cates if a CA has revoked many certi�cates. This triggers a
limitation in our OCaml extraction: since our byte bu�ers
are modelled using F★ sequences, they extract to non-�at
OCaml lists, which means some linear operations on �at
bu�ers may be extracted to quadratic algorithms. Hence, in
18 cases we fail to execute our parsers. This can be �xed
by using a �at memory representation for bu�ers, however
extracting e�cient OCaml parsers is not our goal and we
would rather invest e�ort on extraction to C. The �ndings
are very much aligned with the X.509 dataset: failures align
with the 4 classes of errors in the EFF dataset. Similarly, the
only OpenSSL samples that we do accept have errors in their
signature or in extensions that we did not specify.

5 Related Work and Conclusions

Formally Veri�ed Parsers. While our work focuses on
non-malleability of ASN.1 DER, formally veri�ed parsers
have covered various binary data formats and provided vari-
ous properties on those formats and their implementations.
Narcissus [13] is a library of parsing and serialization com-
binators veri�ed in Coq and extracted to OCaml focused
on the correctness of encoders with respect to decoders; it
has been used to harden the network stack (TCP, UDP, IPv4,
ARPv4, Ethernet) of the Mirage OS kernel [22]. Narcissus
has also been used for Protocol Bu�ers [36]. EverParse [27]
provides not only encoder correctness proofs, but also non-
malleability, and extracts to C instead of OCaml, giving rise
to e�cient zero-copy C implementations proven memory
safe and functionally correct with respect to the data for-
mat speci�cations. While EverParse was initially designed
to support TLS handshake messages, our work is based on
EverParse and extends it with ASN.1 parsing combinators
with non-malleability proofs. Other extensions of EverParse
such as EverParse3D for network virtualization packet for-
mats [32] prove additional properties such as absence of
double fetches to ensure secure e�cient parsing on volatile
input bu�ers where two reads from a given byte cannot be
guaranteed to return the same value.

Formal Studies of ASN.1. While ASN.1 predates many
modern veri�cation tools, there have been some early at-
tempts to gain con�dence in its security properties.
Rinderknecht [28] proved properties of ASN.1 on paper such
as non-malleability of a subset of “well-labeled” ASN.1 for-
mat descriptions, but without clearly relating this subset
to DER. Conversely, Steckler [30] wrote an executable se-
mantics of ASN.1 in Haskell but no associated formal proofs.
In a case study of Quviq QuickCheck[2], the authors par-
tially speci�ed ASN.1 for the declarations involved. They
used property-based testing to compare the ASN.1 speci�-
cation against speci�cations generated from other format

286

ASN1★: Provably Correct Non-malleable Parsing for ASN.1 DER CPP ’23, January 16–17, 2023, Boston, MA, USA

descriptions and uncovered several inconsistencies among
them. DICE* [33] is an implementation of secure measured
boot for IoT formally veri�ed in F★ and extracted to C code
to be run as part of the boot �rmware of micro-controllers.
As one of its main components, it includes a formal seman-
tics of a small subset of ASN.1 used to create the unique
certi�cate of a device. This subset cannot capture general
purpose certi�cate as it lacks several important construc-
tors such as CHOICE or ANY DEFINED BY. Tullsen et al. [34]
formally verify C implementations of ASN.1 decoders and
encoders for a vehicle-to-vehicle (V2V) messaging system,
using the annotation-based SAWveri�cation framework [14]
turning annotated C programs into �rst-order formulae to
be checked by SMT solvers. While their work provides both
non-malleability and encoder correctness, their proofs focus
on the C implementations for the purpose of the security of
the enclosing V2V system, rather than a full formal speci�-
cation of ASN.1 per se. In other words, they have not proven
the functional correctness of their C encoders or decoders
against any formal data format speci�cation. Moreover, they
do not support CHOICE. Pona and Zaliva [26] describe veri-
�cation methodology challenges to verify an existing ASN.1
description compiler for C, ASN1C [35], by �rst formalizing
the corresponding subset of ASN.1 in Coq, and then sep-
arately proving the functional correctness of ASN1C with
respect to their speci�cation using Appel’s Veri�ed Software
Toolchain [1]. However, we are not aware of any completed
results from their e�ort yet.

Security of ASN.1 Parsers. Because of the security-critical
nature of the remaining applications of ASN.1 such as X.509
and the PKCS standards for encryption, signature, and wrap-
ping, many techniques have been applied to �nd vulnerabili-
ties in ASN.1 applications. Frankencert [6], Mucert [9] and
Coveringcerts [20] are three domain-speci�c fuzzing tools
to evaluate the security of real-world parsers and use vari-
ous techniques to guarantee coverage and ensure that alter-
ations pass through cryptographic integrity checks; general-
purpose tools such as Nezha [25] and SAGE [17] have also
been specialized for this purpose. Other papers such as Chen
et al. [10] and Symcerts [8] attempt to detect non-compliance
by discovering discrepancies between implementations, ei-
ther by testing or by symbolic execution. Attacks that exploit
the malleability of ASN.1 parsers to forge signatures have
also been found in PGP [15], NSS [7], GnuTLS [24], Bouncy
Castle [21], or even in the Nintendo 3DS boot ROM [29].

Conclusion. We have presented the �rst formalization of
the semantics of ASN.1 and its Distinguished Encoding Rules,
yielding parsers for binary formatted ASN.1 data that are
type correct and non-malleable. Through testing, we have
con�dence that our formalized semantics matches the us-
age of ASN.1 in the wild, notably on X.509 certi�cates and
certi�cate revocation lists. We aim to continue testing our
semantics on more applications to further increase trust in

our formalization. Additionally, we plan to use our semantics
as a basis on which to build high-assurance cryptographic
applications such as X.509 certi�cate chain validation.

A Background on F★ and EverParse

F★ is a programming language and proof assistant based on
a dependent type theory (like Coq, Agda, or Lean). F★ also
o�ers an e�ect system, extensible with user-de�ned e�ects,
and makes use of SMT solving to automate some proofs. F★

syntax is roughly modeled on OCaml (val, let, match etc.)
with di�erences to account for the additional typing features.
Binding occurrences b of variables take the form x:t, declar-
ing a variable x at type t; or #x:t indicating that the binding
is for an implicit argument. The syntax _(b1) ... (b=) → t intro-
duces a lambda abstraction, whereas b1 → ...→ b= → c is the
shape of a curried function type. Re�nement types are writ-
ten b{t}, e.g., x:int{x≥ 0} is the type of non-negative integers
(i.e., nat). As usual, a bound variable is in scope to the right
of its binding; we omit the type in a binding when it can be
inferred; and for non-dependent function types, we omit the
variable name. The c to the right of an arrow is a computa-

tion type. An example of a computation type is Tot bool, the
type of total computations returning a boolean. By default,
function arrows have Tot co-domains, so, rather than deco-
rating the right-hand side of every arrow with a Tot, the type
of, say, the pure append function on vectors can be written
#a:Type → #m:nat→ #n:nat→ vec a m → vec a n→ vec a (m+n),
with the two explicit arguments and the return type depend-
ing on the three implicit arguments markedwith ‘#’. We often
omit implicit binders and treat all unbound names as implic-
itly bound at the top, e.g., vec a m → vec a n → vec a (m + n)

F★ programs are not executable per se. Instead, F★ extracts
OCaml code from F★ code. To this end, F★ distinguishes be-
tween pure computations, which extract to OCaml, and ghost
computations for proof purposes only (where use of axioms
such as excluded middle or inde�nite description is allowed),
erased at extraction. (F★ also supports e�ectful code, and
extraction to C via Low*, a fragment of F★ shallowly em-
bedding a subset of C, but this is out of the scope of this
paper.)

EverParse. EverParse is a formally veri�ed library and
toolchain to build veri�ed parsers and serializers for binary
data formats such as TLS or network virtualization protocols.
Formal guarantees supported by EverParse include proofs
of unique binary representation, a.k.a. non-malleability, for
the purpose of secure authentication and hashing; proofs
that serializer and parser are (partial) inverse of each other;
bounds on the size of the byte representation. (EverParse
also allows generating executable C code for such parsers,
via the Low* fragment of F★, allowing some performance
optimizations, for which EverParse proves memory safety,
arithmetic safety, functional correctness with respect to the
original parser speci�cation.) To establish such guarantees,

287

CPP ’23, January 16–17, 2023, Boston, MA, USA Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ramananandro, and Nikhil Swamy

EverParse builds on its core component, called LowParse,
a library of monadic parser and serializer combinators for-
mally veri�ed in F★. Such parser combinators supported by
LowParse include dependent pairs (a.k.a. tagged unions), �l-
ter re�nements, rewriters, lists, and data pre�xed with its
size in bytes. Such combinators were initially tailored to sup-
port formats such as TLS handshake messages. On top of
LowParse, EverParse provides several front-ends: Quacky-
Ducky [27] targeting TLS handshake messages, and 3D [32]
targeting network virtualization packets. With those front-
ends, EverParse allows users to de�ne their data formats in
a high-level descriptive language, and to push a button to
automatically generate formally veri�ed parser and serializer
code for their formats, by assembling LowParse combinators,
with zero user proof e�ort. Thus, EverParse as a toolchain
is similar in spirit to recent e�orts in automatic parser gen-
eration for binary data formats such as Protocol Bu�ers or
Cap’n Proto, except that, contrary to EverParse, those two
toolchains come with their own classes of supported data
formats, excluding existing network protocol formats (one
cannot, say, de�ne the TLS handshake message formats in
Protocol Bu�ers.) Moreover, EverParse distinguishes itself
by generating formally veri�ed code.

References
[1] Andrew W. Appel. 2011. Veri�ed Software Toolchain. In Programming

Languages and Systems, Gilles Barthe (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 1–17.

[2] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. 2006.

Testing Telecoms Software with Quviq QuickCheck. In Proceedings of

the 2006 ACM SIGPLAN Workshop on Erlang (Portland, Oregon, USA)

(ERLANG ’06). Association for Computing Machinery, New York, NY,

USA, 2–10. h�ps://doi.org/10.1145/1159789.1159792

[3] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2016. Product

programs and relational program logics. J. Log. Algebr. Meth. Program.

85, 5 (2016), 847–859. h�ps://doi.org/10.1016/j.jlamp.2016.05.004

[4] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. 2012.

Probabilistic Relational Hoare Logics for Computer-Aided Security

Proofs. In 11th International Conference on Mathematics of Program

Construction (Lecture Notes in Computer Science, Vol. 7342). Springer,

1–6. h�p://hal.inria.fr/docs/00/76/58/64/PDF/main.pdf

[5] Nick Benton. 2004. Simple Relational Correctness Proofs for Static

Analyses and Program Transformations. In Proceedings of the 31st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(Venice, Italy) (POPL ’04). ACM, New York, NY, USA, 14–25. h�ps:

//doi.org/10.1145/964001.964003

[6] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and

Vitaly Shmatikov. 2014. Using Frankencerts for Automated Adversarial

Testing of Certi�cate Validation in SSL/TLS Implementations. In 2014

IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA,

May 18-21, 2014. IEEE Computer Society, 114–129. h�ps://doi.org/10.

1109/SP.2014.15

[7] Sze Yiu Chau. 2019. A Decade After Bleichenbacher’06, RSA Signature

Forgery Still Works. Black Hat USA (2019).

[8] Sze Yiu Chau, Omar Chowdhury, Endadul Hoque, Huangyi Ge, Aniket

Kate, Cristina Nita-Rotaru, and Ninghui Li. 2017. Symcerts: Practical

symbolic execution for exposing noncompliance in X. 509 certi�cate

validation implementations. In 2017 IEEE Symposium on Security and

Privacy (SP). IEEE, 503–520.

[9] Yuting Chen and Zhendong Su. 2015. Guided di�erential testing of

certi�cate validation in SSL/TLS implementations. In Proceedings of

the 2015 10th Joint Meeting on Foundations of Software Engineering.

793–804.

[10] Yuting Chen and Zhendong Su. 2015. Guided di�erential testing of

certi�cate validation in SSL/TLS implementations. In Proceedings of

the 2015 10th Joint Meeting on Foundations of Software Engineering.

793–804.

[11] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J.

Comput. Secur. 18, 6 (Sept. 2010), 1157–1210. h�ps://www.cs.cornell.

edu/fbs/publications/Hyperproperties.pdf

[12] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.

2008. Internet X.509 Public Key Infrastructure Certi�cate and Certi�-

cate Revocation List (CRL) Pro�le. h�ps://www.ietf.org/rfc/rfc5280.txt

[13] Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel,

Qianchuan Ye, and Adam Chlipala. 2019. Narcissus: correct-by-

construction derivation of decoders and encoders from binary for-

mats. Proc. ACM Program. Lang. 3, ICFP (2019), 82:1–82:29. h�ps:

//doi.org/10.1145/3341686

[14] Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Hu�man, Dylan

McNamee, and Aaron Tomb. 2016. Constructing Semantic Models of

Programs with the Software Analysis Workbench. In Veri�ed Software.

Theories, Tools, and Experiments, Sandrine Blazy and Marsha Chechik

(Eds.). Springer International Publishing, Cham, 56–72.

[15] Hal Finney. 2006. Bleichenbacher’s RSA signature forgery based

on implementation error. h�p:// imc.org/ ietf-openpgp/mail-archive/

msg14307.html (2006).

[16] Electronic Frontier Foundation. 2010. The EFF SSL Observatory. h�ps:

//www.e�.org/observatory.

[17] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2012. SAGE:

whitebox fuzzing for security testing. Commun. ACM 55, 3 (2012),

40–44. h�ps://doi.org/10.1145/2093548.2093564

[18] Niklas Grimm, Kenji Maillard, Cédric Fournet, Cătălin Hriţcu, Mat-

teo Ma�ei, Jonathan Protzenko, Tahina Ramananandro, Aseem Ras-

togi, Nikhil Swamy, and Santiago Zanella-Béguelin. 2018. A Monadic

Framework for Relational Veri�cation: Applied to Information Se-

curity, Program Equivalence, and Optimizations. In The 7th ACM

SIGPLAN International Conference on Certi�ed Programs and Proofs.

h�ps://arxiv.org/abs/1703.00055

[19] ITU. 2021. Abstract Syntax Notation One ASN.1: Speci�cation of basic

notation. h�ps://www.itu.int/rec/t-rec-x.680/en

[20] Kristo�er Kleine and Dimitris E Simos. 2017. Coveringcerts: Combina-

torial methods for X. 509 certi�cate testing. In 2017 IEEE International

conference on software testing, veri�cation and validation (ICST). IEEE,

69–79.

[21] Ulrich Kühn, Andrei Pyshkin, Erik Tews, and Ralf-Philipp Weinmann.

2008. Variants of Bleichenbacher’s low-exponent attack on PKCS# 1

RSA signatures. SICHERHEIT 2008 (2008).

[22] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David

Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,

and Jon Crowcroft. 2013. Unikernels: Library Operating Systems

for the Cloud. In Proceedings of the Eighteenth International Confer-

ence on Architectural Support for Programming Languages and Op-

erating Systems (Houston, Texas, USA) (ASPLOS ’13). Association

for Computing Machinery, New York, NY, USA, 461–472. h�ps:

//doi.org/10.1145/2451116.2451167

[23] Moxie Marlinspike. 2009. Null Pre�x attack against TLS Server Cer-

ti�cates. h�ps://nvd.nist.gov/vuln/detail/CVE-2009-2510

[24] Yutaka Oiwa, Kazukuni Kobara, and Hajime Watanabe. 2007. A new

variant for an attack against RSA signature veri�cation using param-

eter �eld. In European Public Key Infrastructure Workshop. Springer,

143–153.

[25] Theo�los Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis,

and Suman Jana. 2017. Nezha: E�cient domain-independent di�eren-

tial testing. In 2017 IEEE Symposium on security and privacy (SP). IEEE,

288

https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1016/j.jlamp.2016.05.004
http://hal.inria.fr/docs/00/76/58/64/PDF/main.pdf
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1109/SP.2014.15
https://doi.org/10.1109/SP.2014.15
https://www.cs.cornell.edu/fbs/publications/Hyperproperties.pdf
https://www.cs.cornell.edu/fbs/publications/Hyperproperties.pdf
https://www.ietf.org/rfc/rfc5280.txt
https://doi.org/10.1145/3341686
https://doi.org/10.1145/3341686
http://imc.org/ietf-openpgp/mail-archive/msg14307.html
http://imc.org/ietf-openpgp/mail-archive/msg14307.html
https://www.eff.org/observatory
https://www.eff.org/observatory
https://doi.org/10.1145/2093548.2093564
https://arxiv.org/abs/1703.00055
https://www.itu.int/rec/t-rec-x.680/en
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://nvd.nist.gov/vuln/detail/CVE-2009-2510

ASN1★: Provably Correct Non-malleable Parsing for ASN.1 DER CPP ’23, January 16–17, 2023, Boston, MA, USA

615–632.

[26] Nika Pona and Vadim Zaliva. 2020. Research Report: Formally-Veri�ed

ASN.1 Protocol C-language Stack. In 2020 IEEE Security and Privacy

Workshops (SPW). 308–317. h�ps://doi.org/10.1109/SPW50608.2020.

00065

[27] Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet,

Nikhil Swamy, Tej Chajed, Nadim Kobeissi, and Jonathan Protzenko.

2019. EverParse: Veri�ed Secure Zero-Copy Parsers for Authenticated

Message Formats. In Proceedings of the 28th USENIX Conference on

Security Symposium (Santa Clara, CA, USA) (USENIX Security 2019).

USENIX Association, USA, 1465–1482.

[28] Christian Rinderknecht. 1998. Une formalisation d’ASN.1 - Application

d’une méthode formelle à un langage de spéci�cation télécom. Ph. D.

Dissertation.

[29] Michael Scire, Melissa Mears, Devon Maloney, Matthew Norman,

Shaun Tux, and Phoebe Monroe. 2018. Attacking the Nintendo 3DS

Boot ROMs. arXiv preprint arXiv:1802.00359 (2018).

[30] Paul Steckler. 2007. A Formal Semantics for ASN.1 (High-Con�dence

Software and Systems (HCSS)).

[31] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, An-

toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric

Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindo-

houé, and Santiago Zanella-Béguelin. 2016. Dependent Types and

Multi-Monadic E�ects in F*. In 43rd ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages (POPL). ACM, 256–270.

h�ps://www.fstar-lang.org/papers/mumon/

[32] Nikhil Swamy, Tahina Ramananandro, Aseem Rastogi, Irina Spiri-

donova, Haobin Ni, Dmitry Malloy, Juan Vazquez, Michael Tang,

Omar Cardona, and Arti Gupta. 2022. Hardening Attack Surfaces

with Formally Proven Binary Format Parsers. In Proceedings of the

43rd ACM SIGPLAN International Conference on Programming Lan-

guage Design and Implementation (San Diego, CA, USA) (PLDI 2022).

Association for Computing Machinery, New York, NY, USA, 31–45.

h�ps://doi.org/10.1145/3519939.3523708

[33] Zhe Tao, Aseem Rastogi, Naman Gupta, Kapil Vaswani, and Aditya V.

Thakur. 2021. DICE*: A Formally Veri�ed Implementation of DICE

Measured Boot. In 30th USENIX Security Symposium (USENIX Secu-

rity 21). USENIX Association, 1091–1107. h�ps://www.usenix.org/

conference/usenixsecurity21/presentation/tao

[34] Mark Tullsen, Lee Pike, Nathan Collins, and Aaron Tomb. 2018. For-

mal Veri�cation of a Vehicle-to-Vehicle (V2V) Messaging System. In

Computer Aided Veri�cation, Hana Chockler and Georg Weissenbacher

(Eds.). Springer International Publishing, Cham, 413–429.

[35] Lev Walkin. 2003–2021. asn1c. h�ps://github.com/vlm/asn1c/.

[36] Qianchuan Ye and Benjamin Delaware. 2019. A Veri�ed Protocol

Bu�er Compiler. In Proceedings of the 8th ACM SIGPLAN International

Conference on Certi�ed Programs and Proofs (Cascais, Portugal) (CPP

2019). Association for Computing Machinery, New York, NY, USA,

222–233. h�ps://doi.org/10.1145/3293880.3294105

Received 2022-09-21; accepted 2022-11-21

289

https://doi.org/10.1109/SPW50608.2020.00065
https://doi.org/10.1109/SPW50608.2020.00065
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/3519939.3523708
https://www.usenix.org/conference/usenixsecurity21/presentation/tao
https://www.usenix.org/conference/usenixsecurity21/presentation/tao
https://github.com/vlm/asn1c/
https://doi.org/10.1145/3293880.3294105

	Abstract
	1 Introduction
	2 A Brief Primer on ASN.1 and DER
	3 ASN1
	3.1 Syntax and Well-Formedness of ASN.1
	3.2 Denoting ASN1 Declarations as F Types
	3.3 A Constructive Formalization of DER
	3.4 Automata-Based Parser Combinator

	4 Experimental Evaluation
	4.1 X.509 Certificates
	4.2 Certificate Revocation Lists

	5 Related Work and Conclusions
	A Background on F and EverParse
	References

