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Abstract
We present two abstractions for designing modular state
machine replication (SMR) protocols: trees and turtles. A tree
captures the set of possible state machine histories, while a
turtle represents a subprotocol that tries to find agreement
in this tree. We showcase the applicability of these abstrac-
tions by constructing crash-tolerant SMR protocols out of
abstract tree turtles and providing examples of tree turtle
implementations. The modularity of tree turtles allows a
generic approach for adding a leader for liveness. We expect
that these abstractions will simplify reasoning and formal
verification of SMR protocols as well as facilitate innovation
in protocol designs.

CCS Concepts: • Software and its engineering → Ab-
straction, modeling and modularity; Software fault tol-
erance.

Keywords: state machine replication, distributed consensus
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1 Introduction
State machine replication (SMR) is a widely-used paradigm
in distributed and decentralized services, wherein a set of
processors provides an abstraction of a single state machine
with an ever-growing history [13]. In the face of possible
processor failures and unbounded communication delays,
the challenge lies in ensuring that nodes always agree on
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the history while allowing updates to be made in as timely a
manner as possible.

Traditional SMR protocols are usually constructed around
the notion of an unbounded sequence of slots. The goal of
such a protocol is to fill the slots with values. A typical pro-
tocol consists of an unbounded series of rounds where the
contents of at most one slot may be decided in a round. Some
protocols are only able to fill a single slot (i.e., [1, 5]), thus
an unbounded number of instances of the protocol must
be used to implement SMR. Higher throughput is achieved
by running multiple instances in parallel, either indepen-
dently [4, 9] or in a pipelined fashion [8, 14], or by putting a
batch of values in each slot.
We present here two abstractions that break this slot-by-

slot paradigm: trees and turtles. Referring to a sequence of
values as a chain, the set of such chains forms a tree under
the is-a-prefix-of relation. As was proposed in [10], we gen-
eralize the slot-based scheme for constructing SMR protocols
to allow entire chains to be decided at once, extending the
state machine history down a path through the tree. We then
generalize the notion of a round to an abstract subprotocol
which can be used to decide one chain. We refer to such
protocols as turtles because they are stacked in infinitum
to construct an SMR protocol. Taken together, the result is
protocols called tree turtles.

Using chains requires our subprotocols to form a consen-
sus out of a set with richer algebraic structures than the
traditional set of singlar values. In this case, the algebraic
structure we use is the meet-semilattice formed by the an-
cestor relation between the nodes of the tree as the partial
order and the lowest common ancestor of a set of nodes as
the meet operator. This structure is utilized in the tree turtle
protocols and their proofs of correctness that we present in
this paper.
We expect that our abstractions can lead to various ad-

vantages over traditional SMR approaches. Proposing chains
allows processors to specify preferred orderings of values
in the state machine history. Reasoning about SMR proto-
cols is made simpler with tree turtles because the never-
terminating execution is factored out; this can lead to more
reusable proofs in both an informal an formal setting. Tree
turtles themselves have simple proofs when compared to
existing SMR protocols. The modularity of tree turtles also
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Figure 1. Illustrating the tree structure formed by trees and
the is-a-prefix-of relation. Chain 𝑢 is the longest common
prefix of chains 𝑐1 and 𝑐2. Chain 𝑑 is the longest common
prefix of chains 𝑐1, 𝑐2, and 𝑐3.

enables the design of heterogeneous protocols that dynami-
cally adapt to their workloads or operating conditions.

For liveness, we show how to compose our turtle abstrac-
tion with a leader which attempts to eliminate contention
between processors. Different from traditional approaches,
our protocol does not require a non-faulty leader to make
progress under favorable conditions.

2 Trees and Turtles
Put simply, the goal of SMR is to allow a set of processors
agree on an ever-growing sequence of values in a fault-
tolerant manner. Rather than focusing on the individual val-
ues in a sequence, we will consider how an agreement can
be formed on an entire sequence, or a chain, at once. Doing
so utilizes the tree structure present in sets of chains.
Consider a processor 𝑝 that believes the state machine

history is represented by a chain 𝑐 . If another processor 𝑝 ′

believes the state machine is represented by a different chain
𝑐 ′, then 𝑝 and 𝑝 ′ should be able to agree on a common history.
Beyond the simplest case where 𝑐 = 𝑐 ′, consider whether one
chain is a prefix of the other. If this is the case, the processor
who proposed the shorter chain could later “catch up" by
extending its chain to the longer chain, without needing to
modify the earlier state machine history.

If 𝑝 and 𝑝 ′ attempt to establish agreement on an extension
of the state machine history by proposing chains 𝑐 and 𝑐 ′ to
each other, then we could consider that 𝑝 and 𝑝 ′ agree on the
longest common prefix of 𝑐 and 𝑐 ′. This is the (possibly empty)
longest identical subsequence that can be found starting from
the beginning of each chain. The longest common prefix can
readily be generalized to any number of chains; Figure 1
depicts a tree formed by three chains where the longest
common prefixes are ancestor nodes.
Trees1, then, can be viewed as fundamental to state ma-

chine replication: processors continually propose new chains

1In addition to being like trees in a loose conceptual sense, chains, taken
with the partial order ⪯, satisfy the set-theoretic definition of a tree. This
is because for each chain 𝑐 , the set of its prefixes {𝑐′ | 𝑐′ ⪯ 𝑐 } is totally
ordered by ⪯. As mentioned in the introduction, it is possible to generalize
trees even further to a semilattice.

Tree Turtle 1

Tree Turtle 2

Tree Turtle 3

. . .

Proposals made

Chains decided; Proposals made

Chains decided; Proposals made

Figure 2. Tree turtle protocols are stacked to implement a
state machine replication protocol.

to each other in order to keep extending the longest agreed-
upon path through the tree. Table 1 summarizes the notation
which we will use for chains in this paper.

Table 1. Summary of notation for chains.

⊥ the empty chain
𝑐 ⪯ 𝑐 ′ 𝑐 is a prefix of 𝑐 ′ (or, 𝑐 ′ is an extension of 𝑐)
𝑐 ≃ 𝑐 ′ 𝑐 ⪯ 𝑐 ′ or 𝑐 ′ ⪯ 𝑐 (we say that 𝑐 and 𝑐 ′ agree)
𝑐 ⊓ 𝑐 ′ the longest common prefix of 𝑐 and 𝑐 ′

Now we will turn our attention to the structure of an SMR
protocol. To perform SMR, processors alternate between
proposing new extensions to the longest agreed-upon chain,
collecting proposals from other processors, and deciding
what the new longest agreed-upon chain is. This process
repeats forever to ensure that the longest agreed-upon chain
is ever-growing.
Thus, we may extract a natural building block from this

structure: a subprotocol in which processors propose and
subsequently decide on a single chain. While many subpro-
tocol implementations are possible, we establish a common
specification for the properties they should have. Once we
have one (or many) such subprotocols, constructing a SMR
protocol is simple: we stack these subprotocols on top of
each other in an unending sequence. Owing to this infinite
repetition, and inspired by the saying “turtles all the way
down,” we refer to our building blocks of SMR protocols as
turtles. Since our protocols combine the ideas of trees and
turtles, we will call them tree turtles (Figure 2).

Tree turtles reduce the problem of solving SMR into mak-
ing a single proposal and decision. The specification for tree
turtles requires them to always terminate (Section 5), while
SMR requires that the protocol goes on forever (Section 4).
The tree turtle implementations are encapsulated from the
correctness of the SMR protocol proved in Section 6 mak-
ing those proofs reusable across implementations. This also
readily demonstrates the potential of heterogeneous SMR
protocols composed from multiple types of tree turtles.
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3 System Model
We will denote the set of processors participating in a proto-
col as P. Processors can communicate with all other proces-
sors by sending messages over a network.

Failures. Each processor 𝑝 can either be correct or faulty.
Faulty processors may fail by crashing, at which point they
may stop executing indefinitely. Which processors are faulty
is not known a priori.

Network. The network is assumed to be reliable in the fol-
lowing sense: if a processor 𝑝 sends a message to a correct
processor 𝑞, then 𝑞 eventually receives that message. We
also assume that the network doesn’t forge or garble mes-
sages, meaning that if a processor 𝑞 receives a message from
a processor 𝑝 , then 𝑝 actually sent that message.

Asynchrony. We assume that there are no upper bounds
on the difference between processor speeds or network la-
tency. This means that processors are not able to distinguish
between faulty processors and correct processors that are
simply slow or whose messages have yet to be delivered.

Quorums. A processor can never expect to receive a mes-
sage from all other processors due to the possibility that some
have crashed. To address this, a processor instead waits for a
quorum which is a subset of the processors in P. A quorum
system Q is a set of quorums (Q ⊆ 2P ) which satisfies the
following:

• We assume that any quorum system Q contains a spe-
cial quorum, which we will denote 𝑄∗, that consists
entirely of correct processors.

• We say that a quorum system satisfies 𝑘-intersection
if any set of 𝑘 quorums have at least one processor in
common [7].

The extended version of this paper [12] shows how thresh-
old quorum systems can be used to implement𝑘−intersecting
quorum systems.

4 State Machine Replication Specification
Belowwe give the requirements for a SMR protocol, in which
processors in P alternate proposing and deciding chains.

Definition 4.1 (State Machine Replication Specification).

• SMR-Agreement: if a processor 𝑝 decides chain 𝑑 and a
processor 𝑝 ′ decides chain 𝑑 ′, then 𝑑 ≃ 𝑑 ′ (even if 𝑝 = 𝑝 ′).

• SMR-Validity: if a processor decides chain 𝑑 , then some
processor proposed a chain 𝑐 such that 𝑑 ⪯ 𝑐 .

• SMR-Relay: if a correct processor decides chain 𝑑 , then
eventually all correct processors decide 𝑑 or an extension
of 𝑑 .

• SMR-Monotonicity: if a processor decides chain𝑑 and later
another chain 𝑑 ′, then 𝑑 ⪯ 𝑑 ′.

• SMR-Progress: if a correct processor proposes a chain that
it has not decided before, then that processor eventually
decides a chain it has not decided before.

Note that it is impossible for a protocol to satisfy all prop-
erties if the system is asynchronous [6]. For our tree turtle
protocols in Section 7, we will focus on the first four proper-
ties. We will return to SMR-Progress in Section 8 when we
introduce synchrony assumptions.

5 Tree Turtle Specification
A tree turtle is a fault-tolerant protocol executed by the
processors in P. Processors construct an input and produce
an output for each tree turtle. An input to a tree turtle is a
chain 𝑐 , which we will denote in brackets ⟨𝑐⟩. An output of
a tree turtle is a pair of chains ⟨𝑑,𝑢⟩. Since tree turtles are
subprotocols, we do not assume here that all processors—
including non-crashed ones—will execute a given tree turtle.
We show in Section 6 that in our construction, all correct
processors will in fact execute each tree turtle.

A tree turtle must satisfy the following properties:

Definition 5.1 (Tree Turtle Specification).
• Turtle-Termination: if each correct processor constructs
an input, then eventually each correct processor produces
an output.

• Turtle-Agreement: for any two outputs ⟨𝑑,𝑢⟩ and ⟨𝑑 ′, 𝑢 ′⟩,
𝑑 ⪯ 𝑢 ′ and 𝑑 ′ ⪯ 𝑢.

• Turtle-Unanimity: for any chain𝑤 , if𝑤 ⪯ 𝑐 for all inputs
⟨𝑐⟩, then𝑤 ⪯ 𝑑 for all outputs ⟨𝑑,𝑢⟩.

• Turtle-Validity: if some processor produces an output
⟨𝑑,𝑢⟩, then some processor must have produced an input
⟨𝑐⟩ such that 𝑢 ⪯ 𝑐 .

Turtle-Agreement ensures agreement between any two
outputs of a turtle: note that if both 𝑑 ⪯ 𝑢 and 𝑑 ′ ⪯ 𝑢, then ei-
ther𝑑 ⪯ 𝑑 ′ or𝑑 ′ ⪯ 𝑑 . Further, the case where ⟨𝑑,𝑢⟩ = ⟨𝑑 ′, 𝑢 ′⟩
implies that𝑑 ⪯ 𝑢 for each output. Turtle-Unanimity ensures
that if there is an agreement in the inputs (i.e., proposals)
to a turtle, then that agreement is reflected in the outputs.
Turtle-Validity means that each output of a turtle be a prefix
of an input to that turtle. Unlike SMR protocols, we are able
to guarantee the liveness properties for tree turtle protocols
(Turtle-Termination).

6 Tree Turtles All The Way Down
Tree turtle protocols can be composed with each other to im-
plement a protocol satisfying SMR-Agreement, SMR-Validity,
SMR-Relay, and SMR-Monotonicity.
The construction works as follows. All processors in P

are configured with instructions to execute the same un-
bounded sequence of tree turtles numbered 1, 2, 3, . . . , and
so on. For convenience, we will extend the tree turtle inputs
and outputs ⟨𝑖, 𝑐⟩ and ⟨𝑖, 𝑑,𝑢⟩ to now include the tree turtle
number 𝑖 . We assume that each processor is initialized with
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the tuple ⟨0,⊥,⊥⟩ as the output for the non-existent tree tur-
tle 0. Then the processors begin executing the tree turtles in
succession. If a processor produces tree turtle output ⟨𝑖, 𝑑,𝑢⟩,
that processor decides the chain 𝑑 . It then proposes a new
chain 𝑐 , selecting 𝑐 such that 𝑢 ⪯ 𝑐 , and constructs an input
⟨𝑖 + 1, 𝑐⟩ for the next tree turtle 𝑖 + 1.
By choice of𝑢 ⪯ 𝑐 , this construction ensures the following:

Lemma 6.1. If a processor produces the output ⟨𝑖, 𝑑,𝑢⟩ for
tree turtle 𝑖 , then for all inputs to subsequent tree turtles ⟨ 𝑗, 𝑐⟩
where 𝑖 < 𝑗 , it must be that 𝑑 ⪯ 𝑐 .

Proof. Suppose ⟨ 𝑗, 𝑐⟩ is an input to tree turtle 𝑗 made by a
processor 𝑝 . Proceed by induction on 𝑗 − 𝑖 . If 𝑗 = 𝑖 + 1, then
by the above construction, 𝑝 must have produced ⟨𝑖, 𝑑,𝑢⟩ as
the output of tree turtle 𝑖 for some chain 𝑢 ⪯ 𝑐 . By Turtle-
Agreement, we also know that 𝑑 ⪯ 𝑢 which implies 𝑑 ⪯ 𝑐 . In
the inductive case, we again know that 𝑝 must have produced
an output ⟨ 𝑗 − 1, 𝑑 ′, 𝑢 ′⟩ with 𝑑 ′ ⪯ 𝑢 ′ ⪯ 𝑐 in the previous tree
turtle. The inductive hypothesis gives us that 𝑑 ⪯ 𝑐 ′ for all
inputs to tree turtle 𝑗 − 1 ⟨ 𝑗 − 1, 𝑐 ′⟩. Thus, the condition for
Turtle-Unanimity is satisfied for tree turtle 𝑗 − 1, and so it
must be that 𝑑 ⪯ 𝑑 ′ ⪯ 𝑐 . □

Further, we can use an inductive argument to see that each
correct processor will eventually complete each tree turtle.

Lemma 6.2. Every correct processor eventually produces an
output for each tree turtle.

Proof. Trivially, each non-crashed processor constructs an
input to tree turtle 1. Thus, Turtle-Termination ensures that
the base case of the induction is satisfied. In the inductive
case, each non-crashed processor will use its output of tree
turtle 𝑖 to construct an input to tree turtle 𝑖 + 1, and so an
analogous argument applies. □

Now we proceed to the main proof:

Theorem 6.3. The composition of tree turtles implements a
protocol satisfying SMR-Agreement, SMR-Validity, SMR-Relay,
and SMR-Monotonicity.

SMR-Agreement. Suppose that two processors 𝑝 and 𝑝 ′

decide chains based on their outputs ⟨𝑖, 𝑑,𝑢⟩ and ⟨ 𝑗, 𝑑 ′, 𝑢 ′⟩,
respectively. First, suppose that 𝑖 = 𝑗 . By Turtle-Agreement,
𝑑 ⪯ 𝑢 ′, and we also know that 𝑑 ′ ⪯ 𝑢 ′. Then, since 𝑑 and 𝑑 ′

are prefixes of the same chain𝑢 ′, it must be that either𝑑 ⪯ 𝑑 ′

or 𝑑 ′ ⪯ 𝑑 . Thus, the decided values agree. Now suppose that
𝑖 < 𝑗 . By Lemma 6.1, we know that 𝑑 ⪯ 𝑐 for all inputs ⟨ 𝑗, 𝑐⟩
to tree turtle 𝑗 . By Turtle-Unanimity, we have that 𝑑 ⪯ 𝑑 ′.

SMR-Validity: Suppose that some processor 𝑝 decides
𝑑 . This means that 𝑝 produces an output ⟨𝑖, 𝑑,𝑢⟩ for some
tree turtle 𝑖 and chain 𝑢. By Turtle-Validity, there must exist
an input ⟨𝑖, 𝑐⟩ to the same tree turtle such that 𝑢 ⪯ 𝑐 . So, 𝑐
was proposed by some processors. And since we must have
𝑑 ⪯ 𝑢, we know 𝑑 ⪯ 𝑐 .

SMR-Relay: If a correct processor decides 𝑑 as a result
of its output of tree turtle 𝑖 , then by Lemma 6.1 and Turtle-
Unanimity, any processor that completes tree turtle 𝑖 + 1 will
decide 𝑑 or an extension of 𝑑 , and Lemma 6.2 gives us that
all correct processors will do exactly as such.

SMR-Monotonicity: If a processor decides 𝑑 as a result
of its output of tree turtle 𝑖 , then by Lemma 6.1 and Turtle-
Unanimity, any processor that completes tree turtle 𝑖 + 1
will decide 𝑑 or an extension of 𝑑 . So by induction, any later
decision will be monotonically extending 𝑑 .

□
The above protocol does not guarantee SMR-Progress.

However, the fact that the correct processors eventually
complete each turtle (Lemma 6.2) can be used to make an
auxiliary argument for SMR-Progress for a specific protocol
(for instance, using a probabilistic termination argument).

7 Tree Turtle Implementations
7.1 One-Step Tree Turtle
Our first tree turtle protocol uses only a single round of com-
munication between processors, making it a one-step proto-
col [3]. It requires a quorum system satisfying 3-intersection.

A processor 𝑝 executing the One-Step Tree Turtle protocol
proceeds as follows:
1a. 𝑝 produces an input ⟨𝑐⟩ and broadcasts it to all proces-

sors, including itself;
1b. 𝑝 waits to receive inputs ⟨𝑐𝑠⟩ from all processors 𝑠 in

any quorum 𝑄𝑝 ;
1c. 𝑝 produces ⟨𝑑,𝑢⟩, where:

i. 𝑑 =
d

𝑠∈𝑄𝑝
𝑐𝑠 ;

ii. Let𝐶𝑝 =
{d

𝑠∈𝑄𝑝∩𝑄 𝑐𝑠 | 𝑄 ∈ Q
}
. Then𝑢 = max(𝐶𝑝 ).

That is, 𝑑 is simply the longest common prefix of the
received proposals. To compute 𝑢, 𝑝 considers all quorums
𝑄 . For each such quorum, 𝑝 determines the longest common
prefix on the proposals it received from the processors in 𝑄 .
We show below that these subchains agree with one another.

Lemma 7.1. All elements of 𝐶𝑝 agree.

Proof. All of the elements in 𝐶𝑝 are computed by taking the
intersection of𝑄𝑝 with another quorum. Let𝑄,𝑄 ′ be any two
quorums and 𝑥, 𝑥 ′ elements of𝐶𝑝 where 𝑥 =

d
𝑠∈𝑄𝑝∩𝑄 𝑐𝑠 , and

𝑥 ′ =
d

𝑠∈𝑄𝑝∩𝑄′ 𝑐𝑠 . SinceQ satisfies 3-intersection,𝑄𝑝∩𝑄∩𝑄 ′

is non-empty. Let 𝑟 be some processor in this intersection.
By the use of ⊓, we have that 𝑥 ⪯ 𝑐𝑟 and 𝑥 ′ ⪯ 𝑐𝑟 . This means
that either 𝑥 ⪯ 𝑥 ′ or 𝑥 ′ ⪯ 𝑥 . Thus, all elements of 𝐶𝑝 agree
with each other. □

Since ⪯ is transitive,𝐶𝑝 has amaximum element according
to ⪯, and so the computation of 𝑢 is well-defined. Further,
all elements of 𝐶𝑝 are extensions of 𝑑 :

Lemma 7.2. For all 𝑥 ∈ 𝐶𝑝 , 𝑑 ⪯ 𝑥 .

12



Proof. For any quorum𝑄 , we can observe that𝑄𝑝 ∩𝑄 ⊆ 𝑄𝑝 .
The longest common prefix over a subset of inputs belonging
to processors 𝑄𝑝 is at least as long as the longest common
prefix over 𝑄𝑝 . Thus, 𝑑 ⪯ 𝑥 for any 𝑥 ∈ 𝐶𝑝 . □

We now show that the protocol implements a tree turtle.

Theorem 7.3. The One-Step Tree Turtle protocol satisfies the
tree turtle specification (Definition 5.1).

Turtle-Termination: Suppose that all correct processors
construct an input to the tree turtle. The only point in the
protocol where a given correct processor 𝑝 will wait is to
receive messages from a quorum of processors at step 1b.
Since there is assumed to be a quorum 𝑄∗ that consists en-
tirely of correct processors, and the network reliably delivers
messages between correct processors, 𝑝 will need to wait
no longer than it takes for the messages from all processors
in 𝑄∗ to be delivered. Thus, 𝑝 will be able to complete the
turtle at step 1c.

Turtle-Agreement: Suppose that two processors 𝑝 and
𝑝 ′ produce ⟨𝑑,𝑢⟩ and ⟨𝑑 ′, 𝑢 ′⟩, respectively. For all processors
𝑟 ∈ 𝑄𝑝 ∩ 𝑄𝑝′ , both 𝑝 and 𝑝 ′ received the proposal 𝑐𝑟 from
𝑟 . Letting 𝑥 =

d
𝑟 ∈𝑄𝑝∩𝑄𝑝′

𝑐𝑟 , we see that 𝑥 is present in both
𝐶𝑝 and 𝐶𝑝′ . By Lemma 7.2, 𝑑 ⪯ 𝑥 , and by the maximality
of 𝑢 ′ over 𝐶𝑝′ , 𝑥 ⪯ 𝑢 ′. So, 𝑑 ⪯ 𝑢 ′ by transitivity. The same
argument can be used to show that 𝑑 ′ ⪯ 𝑢.

Turtle-Unanimity: Suppose that there exists a common
prefix𝑤 ⪯ 𝑐 for all inputs ⟨𝑐⟩ to the turtle. Because of step
1b in the protocol, all of the 𝑐𝑠 values used to compute ⟨𝑑,𝑢⟩
came from inputs ⟨𝑐𝑠⟩. This means that𝑤 is a prefix of each
𝑐𝑠 , and so 𝑤 must be a (not necessarily strict) prefix of the
longest common prefix 𝑑 =

d
𝑠∈𝑄𝑝

𝑐𝑠 of the proposals.

Turtle-Validity: Suppose that 𝑝 produces an output ⟨𝑑,𝑢⟩.
We know that 𝑢 =

d
𝑠∈𝑄𝑝∩𝑄 𝑐𝑠 is a prefix of all proposals

made by processors in𝑄𝑝 ∩𝑄 for some quorum𝑄 . So, taking
any processor 𝑟 in the intersection 𝑄𝑝 ∩ 𝑄 , we know that
𝑢 ⪯ 𝑐𝑟 , where ⟨𝑐𝑟 ⟩ was the input produced by 𝑟 . □

7.2 Lower-Bound Tree Turtle
Nowwe will present a second tree turtle protocol, the Lower-
Bound Tree Turtle. This protocol meets the lower bound on
the intersection properties of the quorum system needed to
solve SMR: namely, 2-intersection in the crash failure case [2].
With these weaker assumptions about the quorum system,
we can design a protocol that makes it safe for processors to
output a chain based on messages from all processors in a
quorum under the condition that the chains in all such mes-
sages agree. Satisfying this condition requires an additional
round of communication. The proof of correctness for the
Lower-Bound Tree Turtle is presented in [12].
A processor 𝑝 executing the Lower-Bound Tree Turtle

protocol proceeds as follows:

1a. 𝑝 produces an input ⟨𝑐⟩ and broadcasts it to all proces-
sors, including itself;

1b. 𝑝 waits to receive inputs ⟨𝑐𝑠⟩ from all processors 𝑠 in
any quorum 𝑄1

𝑝 ;
1c. 𝑝 computes 𝑥 =

d
𝑠∈𝑄1

𝑝
𝑐𝑠 ;

2a. 𝑝 broadcasts ⟨𝑥⟩ to all processors, including itself;
2b. 𝑝 waits to receive messages ⟨𝑥𝑠⟩ from all processors 𝑠

in a quorum 𝑄2
𝑝 ;

2c. 𝑝 produces ⟨𝑑,𝑢⟩, where 𝑑 = min
𝑠∈𝑄2

𝑝

𝑥𝑠 and 𝑢 = max
𝑠∈𝑄2

𝑝

𝑥𝑠 .

7.3 Message Size
The protocol we discussed uses messages containing chains
that represent the entire state machine history. As the size of
this history grows, this quickly becomes impractical. How-
ever, it is not necessary for a processor to broadcast a chain
in subsequent turtles once it has decided that chain following
the construction in Section 6. If processor 𝑝 decides chain 𝑑
as a result of its output of a tree turtle, then any other pro-
cessor 𝑝 ′ that outputs ⟨𝑑 ′, 𝑢 ′⟩ from the same tree turtle will
have 𝑑 ⪯ 𝑢 ′ by Turtle-Agreement. Thus, 𝑝 ′ already knows
the contents of the chain 𝑑 , and 𝑝 may omit that chain prefix
in its proposals to subsequent turtles.

7.4 Heterogeneous Protocols
The simplest way to construct an SMR protocol using the
proposed abstractions is to use a single tree turtle proto-
col, instantiated an unbounded number of times. There are
other options, however. Different tree turtle protocols may
have different normal case or worst case performance prop-
erties. The Lower-Bound Tree Turtle, when combined with
a leader as discussed in Section 8, has good normal case per-
formance properties, but it relies on synchrony assumptions
for liveness. A similar protocol, borrowing ideas from the
Ben-Or protocol using randomness [1], can provide termina-
tion almost surely but has bad normal case performance. By
alternating between the two protocols, we can achieve the
best of both worlds.

8 Leaders as an Abstraction
Processors may make different proposals to a tree turtle,
preventing them from being able to decide new chains. This
issue of contention has been addressed previously in SMR
protocols by using a leader which drives all processors to
use the same proposals. In existing leader-based consensus
protocols, the leader lies in the critical path of the protocol:
without a functioning leader, no decisions may be made. We
show that using tree turtles, leaders can be easily factored
out so that their only role is to help the protocol towards
making decisions.

Leaders can be introduced to an existing tree turtle proto-
col as follows:
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• The leader ℓ for tree turtle 𝑖 is the processor with
identifier 𝑖 (mod |P |).

• The leader ℓ for tree turtle 𝑖 broadcasts its input 𝑐ℓ to
tree turtle 𝑖 .

• All processors set a timer and wait for the leader’s
message. If a processor 𝑝 receives 𝑐ℓ before the timer
expires, then it uses 𝑐ℓ as its input to tree turtle 𝑖 . Oth-
erwise, it proceeds normally.

• The processors double the length of the timer in each
tree turtle.

Under synchronous conditions, the leader is able to elim-
inate contention. The proof requires reasoning about quo-
rums and messages, but these concepts generalize beyond
the protocols presented in Section 7.

Lemma 8.1. Using the above construction and the protocols
in Section 7, if there exists an upper bound Δ such that a mes-
sage sent between two non-crashed processors is delivered and
processed within Δ, then there will be an unbounded number
of tree turtles where the leader’s message is received by all
non-crashed processors before their timers expire.

Proof. Consider any tree turtle 𝑖 after the point when the
timers are larger than Δ ·2 |P | . In general, the leader for a tree
turtle may not have started executing that tree turtle at the
point when other processors begin waiting for its message.
Applying Lemma 6.2, consider a processor 𝑝 that has begun
tree turtle 𝑖 + 1. In all of our protocols, 𝑝 must wait to receive
messages from a quorum before completing the protocol.
Thus, must be a quorum 𝑄 of processors who have begun
tree turtle 𝑖 . Since 𝑄 ∩ 𝑄∗ is non-empty, there must be a
tree turtle in the next |P | instances whose leader is a correct
processor in 𝑄 . Let 𝑗 be the first such instance and let ℓ be
the leader for tree turtle 𝑗 .
Since ℓ has already begun tree turtle 𝑖 , it must catch up

at most |P | tree turtles to reach 𝑗 . Let 𝑡 be the timer length
for tree turtle 𝑗 . Since all timer lengths are greater than 2Δ,
ℓ will have received messages from a quorum for every tree
turtle up to 𝑗 . A period of Δ is sufficient for other processors
to receive ℓ’s input to tree turtle 𝑗 . However, this does not
include the timers that ℓ must set for tree turtles 𝑖, . . . , 𝑗 − 1.
Since the timer lengths are doubled after each tree turtle,
the total time required is Δ + (𝑡/2 |P | + 𝑡/2 |P |−1 · · · + 𝑡/2) =
Δ + (1 − 2−|P |)𝑡 . Since 𝑡 > Δ · 2 |P | , ℓ’s message will be
received before the timers expire. Since there are a constant
number of turtles in which failures happen, there will be an
unbounded number of such turtles. □

Theorem 8.2. Using the above construction and the protocols
in Section 7, if there exists an upper bound Δ such that a
message sent between two non-crashed processors is delivered
and processed within Δ, then SMR-Progress is satisfied for the
composition of tree turtles (Section 6).

Proof. According to Lemma 8.1, there will be an unbounded
number of tree turtles where the leader’s message is received

before all timers expire. Turtle-Unanimity provides that the
processors who complete the turtle will decide the leader’s
chain. It follows that correct processors will always eventu-
ally be able to decide a new chain.

□

9 Related Work
Abstracting the problem of achieving consensus on a single
value to entire sequences was previously applied to Paxos
in Generalized Paxos [10]. This work further generalizes
chains to partial-orders of values in which non-interfering
values commute. The HotStuff protocol [14] conceptualizes
the state machine history as a tree, but it only extends the
tree by a single node at a time. The same can be said of
blockchain protocols.

The idea of heterogeneous SMR protocols is similar to pro-
tocols which have different “modes”. Typically there is one
mode which is considered the normal operation of the pro-
tocol and another designed for fast-tracking decisions under
best-case conditions. One such example is Fast Paxos [11]
which is able to skip a round of communication in periods
without contention. These modes, however, are usually con-
sidered to be part of a single protocol instead of separate
protocols satisfying a common specification.

10 Conclusion & Future Work
SMR protocols have been around for over thirty years. We
revisit the structure of these protocols and propose new
abstractions—trees and turtles—for the design of modular
SMR protocols.
While this paper did not discuss the performance of tree

turtle protocols, we believe that they have potential to be
performant through their ability to drive long extensions to
the state machine history in a few rounds of communication.
Future work could include an empirical analysis of their
performance. Further techniques for optimization can also be
investigated such as pipelining chains from different rounds
of the protocol simultaneously.

Tree turtles can be made Byzantine-fault tolerant (BFT), as
we demonstrate in the full version of this paper [12]. There
is also work in progress by the authors on building formally
verified consensus and SMR protocols in both Dafny and Coq
based on the presented abstractions due to their simplicity
and efficiency. We also expect our abstractions to support
different flavors of SMR, such as ordered consensus and het-
erogeneous consensus, by utilizing the additional structure
of trees and the flexibility of the tree turtle composition. Fur-
ther generalizations of trees and chains into more general
algebriac structures are also possible.
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